福建省晉江市永春縣第一中學2026屆數(shù)學高一上期末達標檢測試題含解析_第1頁
福建省晉江市永春縣第一中學2026屆數(shù)學高一上期末達標檢測試題含解析_第2頁
福建省晉江市永春縣第一中學2026屆數(shù)學高一上期末達標檢測試題含解析_第3頁
福建省晉江市永春縣第一中學2026屆數(shù)學高一上期末達標檢測試題含解析_第4頁
福建省晉江市永春縣第一中學2026屆數(shù)學高一上期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省晉江市永春縣第一中學2026屆數(shù)學高一上期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直三棱柱中,若,則異面直線與所成角的余弦值為A.0 B.C. D.2.方程的解所在的區(qū)間是()A. B.C. D.3.已知,,為正實數(shù),滿足,,,則,,的大小關(guān)系為()A. B.C. D.4.設(shè)集合,則()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)5.若,則下列關(guān)系式一定成立的是()A. B.C. D.6.已知命題p:“”,則為()A. B.C. D.7.隨著智能手機的普及,手機攝影越來越得到人們的喜愛,要得到美觀的照片,構(gòu)圖是很重要的,用“黃金分割構(gòu)圖法”可以讓照片感覺更自然、更舒適,“黃金九宮格”是黃金分割構(gòu)圖的一種形式,是指把畫面橫、豎各分三部分,以比例為分隔,4個交叉點即為黃金分割點.如圖,分別用表示黃金分割點.若照片長、寬比例為,設(shè),則()A. B.C. D.8.設(shè)命題,則為()A. B.C. D.9.如果,那么A. B.C. D.10.某數(shù)學興趣小組設(shè)計了一種螺線,作法如下:在水平直線上取長度為1的線段AB,并作等邊三角形ABC,然后以點B為圓心,BA為半徑逆時針畫圓弧,交線段CB的延長線于點D;再以點C為圓心,CD為半徑逆時針畫圓弧,交線段AC的延長線于點E,以此類推,得到的螺線如圖所示.當螺線與直線有6個交點(不含A點)時,則螺線長度最小值為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)(為常數(shù))是奇函數(shù).(1)求的值與函數(shù)的定義域.(2)若當時,恒成立.求實數(shù)的取值范圍.12.下列說法正確的序號是__________________.(寫出所有正確的序號)①正切函數(shù)在定義域內(nèi)是增函數(shù);②已知函數(shù)的最小正周期為,將的圖象向右平移個單位長度,所得圖象關(guān)于軸對稱,則的一個值可以是;③若,則三點共線;④函數(shù)的最小值為;⑤函數(shù)在上是增函數(shù),則的取值范圍是.13.函數(shù)的最小值為________.14.已知滿足任意都有成立,那么的取值范圍是___________.15.設(shè)是定義在上的函數(shù),若存在兩個不等實數(shù),使得,則稱函數(shù)具有性質(zhì),那么下列函數(shù):①;②;③;具有性質(zhì)的函數(shù)的個數(shù)為____________16.某市生產(chǎn)總值連續(xù)兩年持續(xù)增加,第一年的增長率為p,第二年的增長率為q,則該市這兩年生產(chǎn)總值的年平均增長率為()A. B.C. D.-1三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)是定義在上的偶函數(shù),且當時,,函數(shù)在軸左側(cè)的圖象如圖所示(1)求函數(shù)的解析式;(2)若關(guān)于的方程有個不相等的實數(shù)根,求實數(shù)的取值范圍18.有一種新型的洗衣液,去污速度特別快,已知每投放個(,且)單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數(shù)關(guān)系式近似為,其中.若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當水中洗衣液濃度不低于克/升時,它才能起到有效去污的作用.(1)若只投放一次個單位的洗衣液,當兩分鐘時水中洗衣液的濃度為克/升,求的值;(2)若只投放一次個單位的洗衣液,則有效去污時間可達幾分鐘?(3)若第一次投放個單位的洗衣液,分鐘后再投放個單位的洗衣液,則在第分鐘時洗衣液是否還能起到有效去污的作用?請說明理由.19.已知,,(1)用,表示;(2)求20.如圖,建造一個容積為,深為,寬為的長方體無蓋水池,如果池底的造價為元/,池壁的造價為元/,求水池的總造價.21.設(shè)是定義在上的偶函數(shù),的圖象與的圖象關(guān)于直線對稱,且當時,()求的解析式()若在上為增函數(shù),求的取值范圍()是否存在正整數(shù),使的圖象的最高點落在直線上?若存在,求出的值;若不存在,請說明理由

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】連接,在正方形中,,又直三棱柱中,,即,所以面.所以,所以面,面,所以,即異面直線與所成角為90°,所以余弦值為0.故選A.2、B【解析】作差構(gòu)造函數(shù),利用零點存在定理進行求解.【詳解】令,則,,因為,所以函數(shù)的零點所在的區(qū)間是,即方程的解所在的區(qū)間是.故選:B.3、D【解析】設(shè),,,,在同一坐標系中作出函數(shù)的圖象,可得答案.【詳解】設(shè),,,在同一坐標系中作出函數(shù)的圖象,如圖為函數(shù)的交點的橫坐標為函數(shù)的交點的橫坐標為函數(shù)的交點的橫坐標根據(jù)圖像可得:故選:D4、C【解析】由題意分別計算出集合的補集和集合,然后計算出結(jié)果.【詳解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故選:C5、A【解析】判斷函數(shù)的奇偶性以及單調(diào)性,由此可判斷函數(shù)值的大小,即得答案.【詳解】由可知:,為偶函數(shù),又,知在上單調(diào)遞減,在上單調(diào)遞增,故,故選:A.6、C【解析】根據(jù)命題的否定的定義判斷【詳解】特稱命題的否定是全稱命題命題p:“”,的否定為:故選:C7、B【解析】依題意可得,即可得到,再利用二倍角公式及同角三角函數(shù)的基本關(guān)系將弦化切,再代入計算可得;【詳解】解:依題意,所以,所以故選:B8、D【解析】根據(jù)全稱量詞否定的定義可直接得到結(jié)果.【詳解】根據(jù)全稱量詞否定的定義可知:為:,使得.故選:.【點睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.9、D【解析】:,,即故選D10、A【解析】根據(jù)題意,找到螺線畫法的規(guī)律,由此對選項逐一分析,從而得到答案【詳解】第1次畫線:以點為圓心,,旋轉(zhuǎn),劃過的圓弧長為;第2次畫線:以點為圓心,,旋轉(zhuǎn),劃過的圓弧長為,交累計1次;第3次畫線:以點為圓心,,旋轉(zhuǎn),劃過的圓弧長為3,交累計2次;第4次畫線:以點為圓心,,旋轉(zhuǎn),劃過的圓弧長為;第5次畫線:以點為圓心,,旋轉(zhuǎn),劃過的圓弧長為,交累計3次;前5次累計畫線;第6次畫線:以點為圓心,,旋轉(zhuǎn),劃過的圓弧長為,交累計4次,累計畫線;第7次畫線:以點為圓心,,旋轉(zhuǎn),劃過的圓弧長為;第8次畫線:以點為圓心,,旋轉(zhuǎn),劃過的圓弧長為,交累計5次;第9次畫線:以點為圓心,,旋轉(zhuǎn),劃過的圓弧長為,交累計6次,累計畫線,故選項A正確故選:A另解:由前三次規(guī)律可發(fā)現(xiàn),每畫三次,與l產(chǎn)生兩個交點,故要產(chǎn)生6個交點,需要畫9次;每一次畫的圓弧長度是以為首項,為公差的等差數(shù)列,所以前9項之和為:﹒故選:A﹒二、填空題:本大題共6小題,每小題5分,共30分。11、(1),定義域為或;(2).【解析】(1)根據(jù)函數(shù)是奇函數(shù),得到,求出,再解不等式,即可求出定義域;(2)先由題意,根據(jù)對數(shù)函數(shù)的性質(zhì),求出的最小值,即可得出結(jié)果.【詳解】(1)因為函數(shù)是奇函數(shù),所以,所以,即,所以,令,解得或,所以函數(shù)的定義域為或;(2),當時,所以,所以.因為,恒成立,所以,所以的取值范圍是.【點睛】本題主要考查由函數(shù)奇偶性求參數(shù),考查求具體函數(shù)的定義域,考查含對數(shù)不等式,屬于??碱}型.12、③⑤【解析】對每一個命題逐一判斷得解.【詳解】①正切函數(shù)在內(nèi)是增函數(shù),所以該命題是錯誤的;②因為函數(shù)的最小正周期為,所以w=2,所以將的圖象向右平移個單位長度得到,所得圖象關(guān)于軸對稱,所以,所以的一個值不可以是,所以該命題是錯誤的;③若,因為,所以三點共線,所以該命題是正確的;④函數(shù)=,所以sinx=-1時,y最小為-1,所以該命題是錯誤的;⑤函數(shù)在上是增函數(shù),則,所以的取值范圍是.所以該命題是正確的.故答案為③⑤【點睛】本題主要考查正切函數(shù)的單調(diào)性,考查正弦型函數(shù)的圖像和性質(zhì),考查含sinx的二次型函數(shù)的最值的計算,考查對數(shù)型函數(shù)的單調(diào)性,意在考查學生對這些知識的掌握水平和分析推理能力.13、【解析】原函數(shù)化為,令,將函數(shù)轉(zhuǎn)化為,利用二次函數(shù)的性質(zhì)求解.【詳解】由原函數(shù)可化為,因為,令,則,,又因為,所以,當時,即時,有最小值.故答案為:14、【解析】由題意可知,分段函數(shù)在上單調(diào)遞減,因此分段函數(shù)的每一段都是單調(diào)遞減,且左邊一段的最小值不小于右邊的最大值,即可得到實數(shù)的取值范圍.【詳解】由任意都有成立,可知函數(shù)在上單調(diào)遞減,又因,所以,解得.故答案為:.15、【解析】根據(jù)題意,找出存在的點,如果找不出則需證明:不存在,,使得【詳解】①因為函數(shù)是奇函數(shù),可找關(guān)于原點對稱的點,比如,存在;②假設(shè)存在不相等,,使得,即,得,矛盾,故不存在;③函數(shù)為偶函數(shù),,令,,則,存在故答案為:【點睛】關(guān)鍵點點睛:證明存在性命題,只需找到滿足條件的特殊值即可,反之需要證明不存在,一般考慮反證法,先假設(shè)存在,推出矛盾即可,屬于中檔題.16、D【解析】設(shè)平均增長率為x,由題得故填.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用可求時的解析式,當時,利用奇偶性可求得時的的解析式,由此可得結(jié)果;(2)作出圖象,將問題轉(zhuǎn)化為與有個交點,數(shù)形結(jié)合可得結(jié)果.【小問1詳解】由圖象知:,即,解得:,當時,;當時,,,為上的偶函數(shù),當時,;綜上所述:;【小問2詳解】為偶函數(shù),圖象關(guān)于軸對稱,可得圖象如下圖所示,有個不相等的實數(shù)根,等價于與有個不同的交點,由圖象可知:,即實數(shù)的取值范圍為.18、(1);(2)分鐘;(3)見詳解.【解析】(1)由只投放一次個單位的洗衣液,當兩分鐘時水中洗衣液的濃度為克/升,根據(jù)已知可得,,代入可求出的值;(2)由只投放一次個單位的洗衣液,可得,分、兩種情況解不等式即可求解;(3)令,由題意求出此時的值并與比較大小即可.【詳解】(1)因為,當兩分鐘時水中洗衣液的濃度為克/升時,可得,即,解得;(2)因為,所以,當時,,將兩式聯(lián)立解之得;當時,,將兩式聯(lián)立解之得,綜上可得,所以若只投放一次個單位的洗衣液,則有效去污時間可達分鐘;(3)當時,由題意,因為,所以在第分鐘時洗衣液能起到有效去污的作用.【點睛】本題主要考查分段函數(shù)模型的選擇和應(yīng)用,其中解答本題的關(guān)鍵是正確理解水中洗衣液濃度不低于克/升時,它才能起到有效去污的作用,屬中等難度題.19、(1)(2)【解析】先把指數(shù)式化為對數(shù)式求出的值,再利用對數(shù)的運算性質(zhì)進行求解【小問1詳解】解:,,,【小問2詳解】解:,,,20、2880元【解析】先求出水池的長,再求出底面積與側(cè)面積,利用池底的造價為120元/m2,池壁的造價為80元/m2,即可求水池的總造價【詳解】分別設(shè)長、寬、高為am,bm,hm;水池的總造價為y元,則V=abh=16,h=2,b=2,∴a=4m,∴S底=4×2=8m2,S側(cè)=2×(2+4)×2=24m2,∴y=120×8+80×24=2880元【點睛】本題考查利用數(shù)學知識解決實際問題,考查學生的轉(zhuǎn)化能力,屬于基礎(chǔ)題21、(1);(2);(3)見解析.【解析】分析:()當時,,;當時,,從而可得結(jié)果;()由題設(shè)知,對恒成立,即對恒成立,于是,,從而;()因為為偶函數(shù),故只需研究函數(shù)在的最大值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,討論兩種情況,即可篩選出符合題意的正整數(shù).詳解:()當時,,;當時,,∴,()由題設(shè)知,對恒成立,即對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論