版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣西玉林市陸川中學2026屆高二數(shù)學第一學期期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓的離心率為()A B.C. D.2.直線在y軸上的截距是A. B.C. D.3.已知是拋物線上的點,F(xiàn)是拋物線C的焦點,若,則()A.1011 B.2020C.2021 D.20224.在數(shù)列中,,,則()A.985 B.1035C.2020 D.20705.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等6.已知M、N為橢圓上關(guān)于短軸對稱的兩點,A、B分別為橢圓的上下頂點,設(shè)、分別為直線的斜率,則的最小值為()A. B.C. D.7.古希臘著名數(shù)學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A,B的距離之比為定值的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.在平面直角坐標系中,,點P滿足,設(shè)點P的軌跡為C,下列結(jié)論正確的是()A.C的方程為B.當A,B,P三點不共線時,面積的最大值為24C.當A,B,P三點不共線時,射線是的角平分線D.在C上存在點M,使得8.以軸為對稱軸,拋物線通徑的長為8,頂點在坐標原點的拋物線的方程是()A. B.C.或 D.或9.函數(shù)在和處的導數(shù)的大小關(guān)系是()A. B.C. D.不能確定10.已知命題:,使;命題:,都有,則下列結(jié)論正確的是()A.命題“”是真命題: B.命題“”是假命題:C.命題“”是假命題: D.命題“”是假命題11.若命題“或”與命題“非”都是真命題,則A.命題與命題都是真命題B.命題與命題都是假命題C.命題是真命題,命題是假命題D.命題是假命題,命題是真命題12.已知向量,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若恒成立,則______.14.圓錐曲線有良好的光學性質(zhì),光線從橢圓的一個焦點發(fā)出,被橢圓反射后會經(jīng)過橢圓的另一個焦點(如左圖);光線從雙曲線的一個焦點發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點射出(如中圖).封閉曲線E(如右圖)是由橢圓C1:+=1和雙曲線C2:-=1在y軸右側(cè)的一部分(實線)圍成.光線從橢圓C1上一點P0出發(fā),經(jīng)過點F2,然后在曲線E內(nèi)多次反射,反射點依次為P1,P2,P3,P4,…,若P0,P4重合,則光線從P0到P4所經(jīng)過的路程為_________.15.甲乙兩艘輪船都要在某個泊位停靠8個小時,假定它們在一晝夜的時間段內(nèi)隨機地到達,則兩船中有一艘在停靠泊位時、另一艘船必須等待的概率為______.16.已知某農(nóng)場某植物高度,且,如果這個農(nóng)場有這種植物10000棵,試估計該農(nóng)場這種植物高度在區(qū)間上的棵數(shù)為______.參考數(shù)據(jù):若,則,,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求滿足下列條件的曲線的方程:(1)離心率為,長軸長為6的橢圓的標準方程(2)與橢圓有相同焦點,且經(jīng)過點的雙曲線的標準方程18.(12分)已知等比數(shù)列的公比,且,的等差中項為,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.19.(12分)在柯橋古鎮(zhèn)的開發(fā)中,為保護古橋OA,規(guī)劃在O的正東方向100m的C處向?qū)Π禔B建一座新橋,使新橋BC與河岸AB垂直,并設(shè)立一個以線段OA上一點M為圓心,與直線BC相切的圓形保護區(qū)(如圖所示),且古橋兩端O和A與圓上任意一點的距離都不小于50m,經(jīng)測量,點A位于點O正南方向25m,,建立如圖所示直角坐標系(1)求新橋BC的長度;(2)當OM多長時,圓形保護區(qū)的面積最???20.(12分)已知數(shù)列滿足,(1)證明是等比數(shù)列,(2)求數(shù)列的前項和21.(12分)各項都為正數(shù)的數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)求;(3)設(shè),數(shù)列的前項和為,求使成立的的最小值.22.(10分)如圖,在正四棱錐中,為底面中心,,為中點,(1)求證:平面;(2)求:(?。┲本€到平面的距離;(ⅱ)求直線與平面所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)橢圓方程先寫出標準方程,然后根據(jù)標準方程寫出便可得到離心率.【詳解】解:由題意得:,,故選:D2、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.3、C【解析】結(jié)合向量坐標運算以及拋物線的定義求得正確答案.【詳解】設(shè),因為是拋物線上的點,F(xiàn)是拋物線C的焦點,所以,準線為:,因此,所以,即,由拋物線的定義可得,所以故選:C4、A【解析】根據(jù)累加法得,,進而得.【詳解】解:因為所以,當時,,,……,,所以,將以上式子相加得,所以,,.當時,,滿足;所以,.所以.故選:A5、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C6、A【解析】利用為定值即可獲解.【詳解】設(shè)則又,所以所以當且僅當,即,取等故選:A7、C【解析】根據(jù)題意可求出C的方程為,即可根據(jù)題意判斷各選項的真假【詳解】對A,由可得,化簡得,即,A錯誤;對B,當A,B,P三點不共線時,點到直線的最大距離為,所以面積的最大值為,B錯誤;對C,當A,B,P三點不共線時,因為,所以射線是的角平分線,C正確;對D,設(shè),由可得點的軌跡方程為,而圓與圓的圓心距為,兩圓內(nèi)含,所以這樣的點不存在,D錯誤故選:C8、C【解析】由分焦點在軸的正半軸上和焦點在軸的負半軸上,兩種情況討論設(shè)出方程,根據(jù),即可求解.【詳解】由題意,拋物線的頂點在原點,以軸為對稱軸,且通經(jīng)長為8,當拋物線的焦點在軸的正半軸上時,設(shè)拋物線的方程為,可得,解得,所以拋物線方程為;當拋物線的焦點在軸的負半軸上時,設(shè)拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.9、A【解析】求出函數(shù)導數(shù)即可比較.【詳解】,,所以,即.故選:A.10、B【解析】根據(jù)正弦函數(shù)的性質(zhì)判斷命題為假命題,由判斷命題為真命題,從而得出答案.【詳解】因為的值域為,所以命題為假命題因為,所以命題為真命題則命題“”是假命題,命題“”是假命題,命題“”是真命題,命題“”是真命題故選:B11、D【解析】因為非p為真命題,所以p為假命題,又p或q為真命題,所以q為真命題,選D.12、D【解析】按空間向量的坐標運算法則運算即可.【詳解】.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】利用導數(shù)研究的最小值為,再構(gòu)造研究其最值,即可確定參數(shù)a的值.【詳解】令,則且,當時,遞減;當時,遞增;所以,即在上恒成立,令,則,當時,遞增;當時,遞減;所以,綜上,.故答案為:114、【解析】結(jié)合橢圓、雙曲線的定義以及它們的光學性質(zhì)求得正確答案.【詳解】橢圓;雙曲線,雙曲線和橢圓的焦點重合.根據(jù)雙曲線的定義有,所以①,②,根據(jù)橢圓的定義由,所以路程.故答案為:15、【解析】利用幾何概型的面積型概率計算,作出邊長為24的正方形面積,求出部分的面積,即可求得答案.【詳解】設(shè)甲乙兩艘輪船到達的時間分為,則,記事件為兩船中有一艘在停靠泊位時、另一艘船必須等待,則,即∴.故答案為:.【點睛】本題考查幾何概型,考查轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力,求解時注意對概率模型的抽象成面積型.16、1359【解析】由已知求得,則,結(jié)合已知求得,乘以10000得答案【詳解】解:由,得,又,,則,估計該農(nóng)場這種植物高度在區(qū)間,上的棵數(shù)為故答案為:1359三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)【解析】(1)根據(jù)題意,由橢圓的幾何性質(zhì)可得a、c的值,計算可得b的值,討論橢圓焦點的位置,求出橢圓的標準方程,即可得答案;(2)根據(jù)題意,求出橢圓的焦點坐標,進而可以設(shè)雙曲線的方程為,分析可得和,解可得a、b的值,即可得答案【詳解】解:(1)根據(jù)題意,要求橢圓的長軸長為6,離心率為,則,,解可得:,;則,若橢圓的焦點在x軸上,其方程為,若橢圓的焦點在y軸上,其方程為,綜合可得:橢圓的標準方程為或;(2)根據(jù)題意,橢圓的焦點為和,故要求雙曲線的方程為,且,則有,又由雙曲線經(jīng)過經(jīng)過點,則有,,聯(lián)立可得:,故雙曲線方程為:【點睛】本題考查橢圓、雙曲線的標準方程的求法,涉及橢圓、雙曲線的幾何性質(zhì),屬于基礎(chǔ)題18、(1);(2)【解析】(1)將題目的條件寫成的形式并求解,寫出等比等比數(shù)列通項公式;(2)利用錯位相減法求和.小問1詳解】由題意可得,,∴,∵,∴,∴數(shù)列的通項公式為.【小問2詳解】,∴①,②,①-②可得,∴.19、(1)80m;(2).【解析】(1)根據(jù)斜率的公式,結(jié)合解方程組法和兩點間距離公式進行求解即可;(2)根據(jù)圓的切線性質(zhì)進行求解即可.【小問1詳解】由題意,可知,,∵∴直線BC方程:①,同理可得:直線AB方程:②由①②可知,∴,從而得故新橋BC得長度為80m【小問2詳解】設(shè),則,圓心,∵直線BC與圓M相切,∴半徑,又因為,∵∴,所以當時,圓M的面積達到最小20、(1)見解析;(2)【解析】(1)利用定義法證明是一個與n無關(guān)的非零常數(shù),從而得出結(jié)論;(2)由(1)求出,利用分組求和法求【詳解】(1)由得,所以,所以是首項為,公比為的等比數(shù)列,,所以,(2)由(1)知的通項公式為;則所以【點睛】本題主要考查等比數(shù)列的證明以及分組求和法,屬于基礎(chǔ)題21、(1)(2)(3)【解析】(1)直接利用數(shù)列的遞推關(guān)系式,結(jié)合等差數(shù)列的定義,即可求得數(shù)列的通項公式;(2)化簡,結(jié)合裂項相消法求出數(shù)列的和;(3)利用分組法求得,結(jié)合,即可求得的最小值.【小問1詳解】解:因為各項都為正數(shù)的數(shù)列的前項和為,且滿足,當時,解得;當時,;兩式相減可得,整理得(常數(shù)),故數(shù)列是以2為首項,2為公差的等差數(shù)列;所以.【小問2詳解】解:由,可得,所以,所以.【小問3詳解】解:由,可得,所以當為偶數(shù)時,,因為,且為偶數(shù),所以的最小值為48;當為奇數(shù)時,,不存在最小的值,故當為48時,滿足條件.22、(1)證明見解析;(2)(i);(ii).【解析】(1)連接,以點為坐標原點,、、所在直線分別為、、軸建
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年電子產(chǎn)品銷售合同
- 2025年綠色生態(tài)農(nóng)業(yè)示范園區(qū)建設(shè)項目可行性研究報告
- 2025年辦公空間共享經(jīng)濟模式探索可行性研究報告
- 2025年南方沿海港口物流園區(qū)項目可行性研究報告
- 償還墊付協(xié)議書
- 置換協(xié)議合同模板
- 臨時人員協(xié)議書
- 乙方補充協(xié)議書
- 游戲原畫設(shè)計師職業(yè)發(fā)展及面試題含答案
- 人力資源專員面試指南及問題解答
- 2025年居家養(yǎng)老助餐合同協(xié)議
- 公安車輛盤查課件
- 石材行業(yè)合同范本
- 生產(chǎn)性采購管理制度(3篇)
- 2026年遠程超聲診斷系統(tǒng)服務合同
- 中醫(yī)藥轉(zhuǎn)化研究中的專利布局策略
- COPD巨噬細胞精準調(diào)控策略
- 網(wǎng)店代發(fā)合作合同范本
- 心源性休克的液體復蘇挑戰(zhàn)與個體化方案
- 九師聯(lián)盟2026屆高三上學期12月聯(lián)考英語(第4次質(zhì)量檢測)(含答案)
- 2025年醫(yī)院法律法規(guī)培訓考核試題及答案
評論
0/150
提交評論