版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
杜郎口中學(xué)2026屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線有一條重要的性質(zhì):平行于拋物線的軸的光線,經(jīng)過(guò)拋物線上的一點(diǎn)反射后經(jīng)過(guò)它的焦點(diǎn).反之,從焦點(diǎn)發(fā)出的光線,經(jīng)過(guò)拋物線上的一點(diǎn)反射后,反射光線平行于拋物線的軸.已知拋物線,從點(diǎn)發(fā)出一條平行于x軸的光線,經(jīng)過(guò)拋物線兩次反射后,穿過(guò)點(diǎn),則光線從A出發(fā)到達(dá)B所走過(guò)的路程為()A.8 B.10C.12 D.142.函數(shù)y=x3+x2-x+1在區(qū)間[-2,1]上的最小值為()A. B.2C.-1 D.-43.已知向量,,則()A. B.C. D.4.已知橢圓的右焦點(diǎn)為,為坐標(biāo)原點(diǎn),為軸上一點(diǎn),點(diǎn)是直線與橢圓的一個(gè)交點(diǎn),且,則橢圓的離心率為()A. B.C. D.5.過(guò)拋物線的焦點(diǎn)F的直線l與拋物線交于PQ兩點(diǎn),若以線段PQ為直徑的圓與直線相切,則()A.8 B.7C.6 D.56.橢圓:的左焦點(diǎn)為,橢圓上的點(diǎn)與關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),則的值是()A.3 B.4C.6 D.87.在各項(xiàng)都為正數(shù)的等比數(shù)列中,首項(xiàng),前3項(xiàng)和為21,則()A.84 B.72C.33 D.1898.直線的斜率是方程的兩根,則與的位置關(guān)系是()A.平行 B.重合C.相交但不垂直 D.垂直9.已知雙曲線的離心率為,則的漸近線方程為A. B.C. D.10.已知等比數(shù)列的各項(xiàng)均為正數(shù),公比,且滿足,則()A.8 B.4C.2 D.111.已知函數(shù),若對(duì)任意兩個(gè)不等的正實(shí)數(shù),,都有,則實(shí)數(shù)的最小值為()A. B.C. D.12.實(shí)數(shù)m變化時(shí),方程表示的曲線不可以是()A.直線 B.圓C橢圓 D.雙曲線二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,二面角的大小為_(kāi)_________(用反三角表示)14.已知函數(shù)則的值為.____15.如圖,已知底面為正方形且各側(cè)棱均相等的四棱錐可繞著任意旋轉(zhuǎn),平面,分別是的中點(diǎn),,,點(diǎn)在平面上的射影為點(diǎn),則當(dāng)最大時(shí),二面角的大小是________16.已知5道試題中有3道代數(shù)題和2道幾何題,每次從中抽取一道題,抽出的題不再放回,在第1次抽到代數(shù)題的條件下,第2次抽到幾何題的概率為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱柱中,平面ABC,,,,點(diǎn)D,E分別在棱和棱上,且,,M為棱中點(diǎn)(1)求證:;(2)求直線AB與平面所成角的正弦值18.(12分)如圖,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,(1)求證:平面ACF;(2)在線段PB上是否存在一點(diǎn)H,使得CH與平面ACF所成角的正弦值為?若存在,求出線段PH的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由19.(12分)已知函數(shù)(其中為自然對(duì)數(shù)底數(shù))(1)討論函數(shù)的單調(diào)性;(2)當(dāng)時(shí),若恒成立,求實(shí)數(shù)的取值范圍.20.(12分)雙曲線的離心率為,虛軸的長(zhǎng)為4.(1)求的值及雙曲線的漸近線方程;(2)直線與雙曲線相交于互異兩點(diǎn),求的取值范圍.21.(12分)已知的三個(gè)內(nèi)角,,的對(duì)邊分別為,,,且滿足.(1)求角的大??;(2)若,,,求的長(zhǎng).22.(10分)已知數(shù)列的首項(xiàng),其前n項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為,且,求n.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用拋物線的定義求解.【詳解】如圖所示:焦點(diǎn)為,設(shè)光線第一次交拋物線于點(diǎn),第二次交拋物線于點(diǎn),過(guò)焦點(diǎn)F,準(zhǔn)線方程為:,作垂直于準(zhǔn)線于點(diǎn),作垂直于準(zhǔn)線于點(diǎn),則,,,,故選:C2、C【解析】詳解】,令,解得或;令,解得函數(shù)在上遞增,在遞減,在遞增,時(shí),取極大值,極大值是時(shí),函數(shù)取極小值,極小值是,而時(shí),時(shí),,故函數(shù)的最小值為,故選C.3、D【解析】按空間向量的坐標(biāo)運(yùn)算法則運(yùn)算即可.【詳解】.故選:D.4、D【解析】設(shè)橢圓的左焦點(diǎn)為,由橢圓的對(duì)稱(chēng)性可知,則,所以,即可得到的關(guān)系,利用橢圓的定義進(jìn)而求得離心率.【詳解】設(shè)橢圓的左焦點(diǎn)為,連接,因?yàn)?,所以,如圖所示,所以,設(shè),,則,所以,故選:D.5、C【解析】依據(jù)拋物線定義可以證明:以過(guò)拋物線焦點(diǎn)F的弦PQ為直徑的圓與其準(zhǔn)線相切,則可以順利求得線段的長(zhǎng).【詳解】拋物線的焦點(diǎn)F,準(zhǔn)線取PQ中點(diǎn)H,分別過(guò)P、Q、H作拋物線準(zhǔn)線的垂線,垂足分別為N、M、E則四邊形為直角梯形,為梯形中位線,由拋物線定義可知,,,則故,即點(diǎn)H到拋物線準(zhǔn)線的距離為的一半,則以線段PQ為直徑的圓與拋物線的準(zhǔn)線相切.又以線段PQ為直徑的圓與直線相切,則以線段PQ為直徑的圓的直徑等于直線與直線間的距離.即故選:C6、D【解析】令橢圓C的右焦點(diǎn),由已知條件可得四邊形為平行四邊形,再利用橢圓定義計(jì)算作答.【詳解】令橢圓C的右焦點(diǎn),依題意,線段與互相平分,于是得四邊形為平行四邊形,因此,而橢圓:的長(zhǎng)半軸長(zhǎng),所以.故選:D7、A【解析】分析:設(shè)等比數(shù)列的公比為,根據(jù)前三項(xiàng)的和為列方程,結(jié)合等比數(shù)列中,各項(xiàng)都為正數(shù),解得,從而可以求出的值.詳解:設(shè)等比數(shù)列的公比為,首項(xiàng)為3,前三項(xiàng)的和為,,解之得或,在等比數(shù)列中,各項(xiàng)都為正數(shù),公比為正數(shù),舍去),,故選A.點(diǎn)睛:本題考查以一個(gè)特殊的等比數(shù)列為載體,通過(guò)求連續(xù)三項(xiàng)和的問(wèn)題,著重考查了等比數(shù)列的通項(xiàng),等比數(shù)列的性質(zhì)和前項(xiàng)和等知識(shí)點(diǎn),屬于簡(jiǎn)單題.8、C【解析】由韋達(dá)定理可得方程的兩根之積為,從而可知直線、的斜率之積為,進(jìn)而可判斷兩直線的位置關(guān)系【詳解】設(shè)方程的兩根為、,則直線、的斜率,故與相交但不垂直故選:C9、C【解析】,故,即,故漸近線方程為.【考點(diǎn)】本題考查雙曲線的基本性質(zhì),考查學(xué)生的化歸與轉(zhuǎn)化能力.10、A【解析】根據(jù)是等比數(shù)列,則通項(xiàng)為,然后根據(jù)條件可解出,進(jìn)而求得【詳解】由為等比數(shù)列,不妨設(shè)首項(xiàng)為由,可得:又,則有:則故選:A11、B【解析】不妨設(shè),由題意,可得,構(gòu)造函數(shù),則在上單調(diào)遞增,從而有在上恒成立,分離參數(shù)轉(zhuǎn)化為最值即可求解.【詳解】解:由題意,不妨設(shè),因?yàn)閷?duì)任意兩個(gè)不等的正實(shí)數(shù),,都有,所以,即,構(gòu)造函數(shù),則,所以在上單調(diào)遞增,所以在上恒成立,即在上恒成立,當(dāng)時(shí),因?yàn)椋?,所以,?shí)數(shù)的最小值為.故選:B.12、B【解析】根據(jù)的取值分類(lèi)討論說(shuō)明【詳解】時(shí)方程化為,為直線,時(shí),方程化為,為橢圓,時(shí),方程化為,為雙曲線,而,因此曲線不可能是圓故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作出二面角的平面角,并計(jì)算出二面角的大小.【詳解】設(shè),畫(huà)出圖像如下圖所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小為.故答案為:14、-1【解析】詳解】試題分析:由題意,得,所以,解得,所以考點(diǎn):導(dǎo)數(shù)的運(yùn)算15、##【解析】先計(jì)算得到二面角的大小為60°,設(shè)二面角C-AB-O的大小為,則,計(jì)算得到答案.【詳解】解:由題可得,,因?yàn)榉謩e是的中點(diǎn),所以,,又,所以平面因?yàn)椋?所以二面角為,設(shè)二面角的大小為,即,則,在中,利用余弦定理得到:,故當(dāng)時(shí),取得最大值.故答案為:16、.【解析】設(shè)事件:第1次抽到代數(shù)題,事件:第2次抽到幾何題,求得,結(jié)合條件概率的計(jì)算公式,即可求解.【詳解】由題意,從5道試題中有3道代數(shù)題和2道幾何題,每次從中抽取一道題,抽出不再放回,設(shè)事件:第1次抽到代數(shù)題,事件:第2次抽到幾何題,則,,所以在第1次抽到代數(shù)題的條件下,第2次抽到幾何題的概率為:.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結(jié)論;(2)構(gòu)建空間直角坐標(biāo)系,確定相關(guān)點(diǎn)坐標(biāo),進(jìn)而求的方向向量、面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求直線與平面所成角的正弦值.【小問(wèn)1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點(diǎn),則,又,則平面,由平面,因此,.【小問(wèn)2詳解】以為原點(diǎn),以,,為軸、軸、軸的正方向建立空間直角坐標(biāo)系,如圖所示,可得:,,,,,,.∴,,,,設(shè)為面的法向量,則,令得,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.18、(1)證明見(jiàn)解析(2)存在,的長(zhǎng)為或,理由見(jiàn)解析.【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)設(shè),求出,根據(jù)與平面所成角的正弦值列方程,由此求得,進(jìn)而求得的長(zhǎng).小問(wèn)1詳解】依題意,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,,以為空間坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,設(shè)平面法向量為,則,故可設(shè),由于,所以平面.【小問(wèn)2詳解】存在,理由如下:設(shè),,,,依題意與平面所成角的正弦值為,即,,解得或.,即的長(zhǎng)為或,使與平面所成角的正弦值為.19、(1)答案見(jiàn)解析(2)【解析】(1),進(jìn)而分,,三種情況討論求解即可;(2)由題意知在上恒成立,故令,再根據(jù)導(dǎo)數(shù)研究函數(shù)的最小值,注意到使,進(jìn)而結(jié)合函數(shù)隱零點(diǎn)求解即可.【小問(wèn)1詳解】解:①,在上單調(diào)增;②,令,單調(diào)減單調(diào)增;③,單調(diào)增單調(diào)減.綜上,當(dāng)時(shí),在上單調(diào)增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.【小問(wèn)2詳解】解:由題意知在上恒成立,令,,單調(diào)遞增∵,∴使得,即單調(diào)遞減;單調(diào)遞增,令,則在上單調(diào)增,∴實(shí)數(shù)的取值范圍是20、(1),,雙曲線的漸近線方程為和;(2).【解析】(1)根據(jù)雙曲線的離心率公式,結(jié)合虛軸長(zhǎng)的定義進(jìn)行求解即可;(2)將直線方程與雙曲線方程聯(lián)立,利用方程解的個(gè)數(shù)進(jìn)行求解即可.【小問(wèn)1詳解】因?yàn)殡p曲線的離心率為,所以有ca而該雙曲線的虛軸的長(zhǎng)為4,所以,所以,因此雙曲線的浙近線方程為:y=±x?x-y=0或;【小問(wèn)2詳解】由(1)可知:,,所以該雙曲線的標(biāo)準(zhǔn)方程為:,與直線聯(lián)立得:,因?yàn)橹本€與雙曲線相交于互異兩點(diǎn),所以有:且,所以的取值范圍為:.21、(1);(2).【解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年金融服務(wù)合同(企業(yè)融資咨詢(xún))
- 國(guó)稅扣款協(xié)議書(shū)
- 木板買(mǎi)賣(mài)合同范本
- 店鋪出資合同范本
- 客戶返利合同范本
- 2026延長(zhǎng)石油天然氣公司招聘面試題及答案
- 2025年部隊(duì)士官自查自糾報(bào)告與整改措施范文
- 2026天津百利機(jī)械裝備集團(tuán)招聘面試題及答案
- 2025福建廈門(mén)市集美區(qū)寧寶幼兒園非在編教輔招聘2人備考題庫(kù)附答案
- 2025年西安啟迪兒童醫(yī)院招聘筆試備考試題(46人)附答案解析
- 脊髓損傷的膀胱護(hù)理
- 《醫(yī)學(xué)影像診斷報(bào)告書(shū)寫(xiě)指南》(2025版)
- 高校物業(yè)安全培訓(xùn)內(nèi)容課件
- (正式版)DB33∕T 1430-2025 《海塘安全監(jiān)測(cè)技術(shù)規(guī)程》
- 醫(yī)藥競(jìng)聘地區(qū)經(jīng)理匯報(bào)
- 水庫(kù)調(diào)度操作規(guī)程模板
- 產(chǎn)科護(hù)士長(zhǎng)年終總結(jié)
- 酒店情況診斷報(bào)告
- DBJ04-T483-2025 海綿型城市道路與廣場(chǎng)設(shè)計(jì)標(biāo)準(zhǔn)
- 農(nóng)藥運(yùn)輸儲(chǔ)存管理制度
- TD/T 1036-2013土地復(fù)墾質(zhì)量控制標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論