湖南省長沙市雨花區(qū)南雅中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁
湖南省長沙市雨花區(qū)南雅中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁
湖南省長沙市雨花區(qū)南雅中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁
湖南省長沙市雨花區(qū)南雅中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁
湖南省長沙市雨花區(qū)南雅中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省長沙市雨花區(qū)南雅中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),,若,使得,則實數(shù)的取值范圍是()A. B.C. D.2.如圖,在三棱錐中,平面ABC,,,,則點A到平面PBC的距離為()A.1 B.C. D.3.如圖,已知,分別是橢圓的左、右焦點,現(xiàn)以為圓心作一個圓恰好經(jīng)過橢圓的中心并且交橢圓于點,.若過點的直線是圓的切線,則橢圓的離心率為()A. B.C. D.4.在等比數(shù)列中,,則的公比為()A. B.C. D.5.若直線被圓截得的弦長為4,則的最大值是()A. B.C.1 D.26.已知中心在坐標原點,焦點在軸上的雙曲線的離心率為,則其漸近線方程為()A. B.C. D.7.若等差數(shù)列的前項和為,首項,,,則滿足成立的最大正整數(shù)是()A. B.C. D.8.已知等比數(shù)列滿足,,則數(shù)列前6項的和()A.510 B.126C.256 D.5129.已知,則的最小值是()A.3 B.8C.12 D.2010.在四棱錐中,分別為的中點,則()A. B.C. D.11.已知兩條不同直線和平面,下列判斷正確的是()A.若則 B.若則C.若則 D.若則12.直線分別與軸,軸交于A,B兩點,點在圓上,則面積的取值范圍是()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)y=x3+ax2+bx+a2在x=1處有極值10,則a=________.14.設(shè)圓,圓,則圓有公切線___________條.15.已知滿足約束條件,則的最小值為___________16.若a,b,c都為正數(shù),,且,,成等比數(shù)列,則的最大值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左,右焦點為,橢圓的離心率為,點在橢圓C上(1)求橢圓C的方程;(2)點T為橢圓C上的點,若點T在第一象限,且與x軸垂直,過T作兩條斜率互為相反數(shù)的直線分別與橢圓C交于點M,N,探究直線的斜率是否為定值?若為定值,請求之;若不為定值,請說明理由18.(12分)某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率)(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時該蓄水池的體積最大19.(12分)已知函數(shù)在處的切線方程為.(1)求的解析式;(2)求函數(shù)圖象上的點到直線的距離的最小值.20.(12分)已知數(shù)列的前n項和為,,且.(1)求數(shù)列的通項公式;(2)在與之間插入n個數(shù),使這個數(shù)組成一個公差為的等差數(shù)列,求證:.21.(12分)如圖所示,在空間四邊形中,,分別為,的中點,,分別在,上,且.求證:(1)、、、四點共面;(2)與的交點在直線上22.(10分)已知橢圓C:的左、右焦點分別為F1,F(xiàn)2,離心率為,橢圓C上點M滿足(1)求橢圓C的標準方程:(2)若過坐標原點的直線l交橢圓C于P,Q兩點,求線段PQ長為時直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由定義證明函數(shù)的單調(diào)性,再由函數(shù)不等式恒能成立的性質(zhì)得出,從而得出實數(shù)的取值范圍.【詳解】任取,,即函數(shù)在上單調(diào)遞減,若,使得,則即故選:A【點睛】結(jié)論點睛:本題考查不等式恒成立問題,解題關(guān)鍵是轉(zhuǎn)化為求函數(shù)的最值,轉(zhuǎn)化時要注意全稱量詞與存在量詞對題意的影響.等價轉(zhuǎn)化如下:(1),,使得成立等價于(2),,不等式恒成立等價于(3),,使得成立等價于(4),,使得成立等價于2、A【解析】設(shè)點A到平面PBC的距離為,根據(jù)等體積法求解即可.【詳解】因為平面ABC,所以,因為,,所以又,,所以,所以,設(shè)點A到平面PBC的距離為,則,即,,故選:A3、A【解析】由切線的性質(zhì),可得,,再結(jié)合橢圓定義,即得解【詳解】因為過點的直線圓的切線,,,所以由橢圓定義可得,可得橢圓的離心率故選:A4、D【解析】利用等比數(shù)列的性質(zhì)把方程都變成和有關(guān)的式子后進行求解.【詳解】由等比數(shù)列的等比中項性質(zhì)可得,又,所以,因,所以,所以,故選:D.5、A【解析】根據(jù)弦長求得的關(guān)系式,結(jié)合基本不等式求得的最大值.【詳解】圓的圓心為,半徑為,所以直線過圓心,即,由于為正數(shù),所以,當且僅當時,等號成立.故選:A6、A【解析】根據(jù)離心率求出的值,再根據(jù)漸近線方程求解即可.【詳解】因雙曲線焦點在軸上,所以漸近線方程為:,又因為雙曲線離心率為,且,所以,解得,即漸近線方程為:.故選:A.7、B【解析】由等差數(shù)列的,及得數(shù)列是遞減的數(shù)列,因此可確定,然后利用等差數(shù)列的性質(zhì)求前項和,確定和的正負【詳解】∵,∴和異號,又數(shù)列是等差數(shù)列,首項,∴是遞減的數(shù)列,,由,所以,,∴滿足的最大自然數(shù)為4040故選:B【點睛】關(guān)鍵點睛:本題求滿足的最大正整數(shù)的值,關(guān)鍵就是求出,時成立的的值,解題時應(yīng)充分利用等差數(shù)列下標和的性質(zhì)求解,屬于中檔題.8、B【解析】設(shè)等比數(shù)列的公比為,由題設(shè)條件,求得,再結(jié)合等比數(shù)列的求和公式,即可求解.【詳解】設(shè)等比數(shù)列的公比為,因為,,可得,解得,所以數(shù)列前6項的和.故選:B.【點睛】本題主要考查了等比數(shù)列的通項公式,以及等比數(shù)列的前項和公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項公式和求和公式,準確計算是解答的關(guān)鍵,著重考查推理與運算能力.9、A【解析】利用基本不等式進行求解即可.【詳解】因為,所以,當且僅當時取等號,即當時取等號,故選:A10、A【解析】結(jié)合空間幾何體以及空間向量的線性運算即可求出結(jié)果.【詳解】因為分別為的中點,則,,,故選:A.11、D【解析】根據(jù)線線、線面、面面的平行與垂直的位置關(guān)系即可判斷.【詳解】解:對于選項A:若,則與可能平行,可能相交,可能異面,故選項A錯誤;對于選項B:若,則,故選項B錯誤;對于選項C:當時不滿足,故選項C錯誤;綜上,可知選項D正確.故選:D.12、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點到直線的距離.【詳解】與x,y軸的交點,分別為,,點在圓,即上,所以,圓心到直線距離為,所以面積的最小值為,最大值為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】∵y′=3x2+2ax+b,∴或當a=-3,b=3時,y′=3x2-6x+3=3(x-1)2≥0恒成立,故舍去.所以a=414、2【解析】將圓轉(zhuǎn)化成標準式,結(jié)合圓心距判斷兩圓位置關(guān)系,進而求解.【詳解】由題意得,圓:,圓:,∴,∴與相交,有2條公切線.故答案為:215、【解析】根據(jù)題意,作出可行域,進而根據(jù)幾何意義求解即可.【詳解】解:作出可行域如圖,將變形為,所以根據(jù)幾何意義,當直線過點時,有最小值,所以聯(lián)立方程得,所以的最小值為故答案為:16、【解析】由等比數(shù)列性質(zhì)知,即可得,再利用基本不等式求解即可.【詳解】由,,成等比數(shù)列,得,即又,則,所以,即,即所以,當且僅當時,等號成立,故的最大值為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)直線的斜率為定值,且定值為.【解析】(1)根據(jù)橢圓的離心率及所過的點求出橢圓參數(shù)a、b,即可得橢圓標準方程.(2)由題設(shè)得,法一:設(shè)為,聯(lián)立橢圓方程應(yīng)用韋達定理求M坐標,根據(jù)與斜率關(guān)系求N的坐標,應(yīng)用兩點式求斜率;法二:設(shè)為,,聯(lián)立橢圓方程,應(yīng)用韋達定理及得到關(guān)于參數(shù)m、k的方程,即可判斷是否為定值.【小問1詳解】由題意,則,又,所以橢圓C方程為,代入有,解得,所以,故橢圓的標準方程為;【小問2詳解】由題設(shè)易知:,法一:設(shè)直線為,由,消去y,整理得,因為方程有一個根為,所以M的橫坐標為,縱坐標,故M為,用代替k,得N為,所以,故直線的斜率為定值法二:由已知直線的斜率存在,可設(shè)直線為,,由,消去y,整理得,所以,而,又,代入整理得,所以,即,若,則直線過點T,不合題意,所以.即,故直線的斜率為定值.【點睛】關(guān)鍵點點睛:第二問,設(shè)直線方程并聯(lián)立橢圓方程,應(yīng)用韋達定理及得到關(guān)于直線斜率的方M、N程,或求出的坐標,應(yīng)用兩點式求斜率.18、(1)V(r)=(300r﹣4r3)(0,5)(2)見解析【解析】(1)先由圓柱的側(cè)面積及底面積計算公式計算出側(cè)面積及底面積,進而得出總造價,依條件得等式,從中算出,進而可計算,再由可得;(2)通過求導(dǎo),求出函數(shù)在內(nèi)的極值點,由導(dǎo)數(shù)的正負確定函數(shù)的單調(diào)性,進而得出取得最大值時的值.(1)∵蓄水池的側(cè)面積的建造成本為元,底面積成本為元∴蓄水池的總建造成本為元所以即∴∴又由可得故函數(shù)的定義域為(2)由(1)中,可得()令,則∴當時,,函數(shù)為增函數(shù)當,函數(shù)為減函數(shù)所以當時該蓄水池的體積最大考點:1.函數(shù)的應(yīng)用問題;2.函數(shù)的單調(diào)性與導(dǎo)數(shù);2.函數(shù)的最值與導(dǎo)數(shù).19、(1);(2).【解析】(1)由題可得,然后利用導(dǎo)數(shù)的幾何意義即求;(2)由題可得切點到直線的距離最小,即得.【小問1詳解】∵函數(shù),∴的定義域為,,∴在處切線的斜率為,由切線方程可知切點為,而切點也在函數(shù)圖象上,解得,∴的解析式為;【小問2詳解】由于直線與直線平行,直線與函數(shù)在處相切,所以切點到直線的距離最小,最小值為,故函數(shù)圖象上的點到直線的距離的最小值為.20、(1)(2)證明見解析【解析】(1)根據(jù)作差即可得到是以為首項,為公比的等比數(shù)列,從而得到數(shù)列的通項公式;(2)由(1)可知,,根據(jù)等差數(shù)列的通項公式得到,即可得到,再令,利用錯位相減法求出,即可得證;【小問1詳解】解:因為,且,當時,則,所以,當時,,則,即,所以是以為首項,為公比的等比數(shù)列,所以;【小問2詳解】解:由(1)可知,,因為,所以,所以,令,則,所以,所以,即,所以,即;21、(1)證明見解析;(2)證明見解析【解析】(1)由平行關(guān)系轉(zhuǎn)化,可得,即可證明四點共面;(2)由條件證明與的交點既在平面上,又在平面上,即可證明.【詳解】證明(1)∵,∴∵,分別為,的中點,∴,∴,∴,,,四點共面(2)∵,不是,的中點,∴,且,故為梯形∴與必相交,設(shè)交點為,∴平面,平面,∴平面,且平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論