2026屆湖南省醴陵市第二中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第1頁
2026屆湖南省醴陵市第二中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第2頁
2026屆湖南省醴陵市第二中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第3頁
2026屆湖南省醴陵市第二中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第4頁
2026屆湖南省醴陵市第二中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆湖南省醴陵市第二中學(xué)數(shù)學(xué)高二上期末調(diào)研試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知四棱柱ABCD-A1B1C1D1的底面是邊長為2的正方形,側(cè)棱與底面垂直,若點(diǎn)C到平面AB1D1的距離為,則直線與平面所成角的余弦值為()A. B.C. D.2.已知i是虛數(shù)單位,復(fù)數(shù)z=,則復(fù)數(shù)z的虛部為()A.i B.-iC.1 D.-13.若拋物線焦點(diǎn)坐標(biāo)為,則的值為A. B.C.8 D.44.空間四點(diǎn)共面,但任意三點(diǎn)不共線,若為該平面外一點(diǎn)且,則實(shí)數(shù)的值為()A. B.C. D.5.從全體三位正整數(shù)中任取一數(shù),則此數(shù)以2為底的對數(shù)也是正整數(shù)的概率為()A. B.C. D.以上全不對6.已知圓的圓心在x軸上,半徑為1,且過點(diǎn),圓:,則圓,的公共弦長為A. B.C. D.27.已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)P是橢圓上一點(diǎn)且的最大值為,則橢圓離心率為()A. B.C. D.8.橢圓的短軸長為()A.8 B.2C.4 D.9.已知函數(shù)的導(dǎo)函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.10.已知實(shí)數(shù)a,b滿足,則下列不等式中恒成立的是()A. B.C. D.11.設(shè),是兩個(gè)不同的平面,是直線且.“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,第九章“勾股”,講述了“勾股定理”及一些應(yīng)用,直角三角形的兩直角邊與斜邊的長分別稱“勾”“股”“弦”,且“”.設(shè)分別是雙曲線的左、右焦點(diǎn),直線交雙曲線左、右兩支于兩點(diǎn),若恰好是的“勾”“股”,則此雙曲線的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線:的焦點(diǎn),為拋物線上在第一象限的點(diǎn).若為的中點(diǎn),為拋物線的頂點(diǎn),則直線斜率的最大值為______.14.已知雙曲線,的左、右焦點(diǎn)分別為、,且的焦點(diǎn)到漸近線的距離為1,直線與交于,兩點(diǎn),為弦的中點(diǎn),若為坐標(biāo)原點(diǎn))的斜率為,,則下列結(jié)論正確的是____________①;②的離心率為;③若,則的面積為2;④若的面積為,則為鈍角三角形15.瑞士數(shù)學(xué)家歐拉(Euler)1765年在所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點(diǎn),,,則歐拉線的方程為______16.命題“若實(shí)數(shù)a,b滿足,則且”是_______命題(填“真”或“假”).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的圓心在直線上,且過點(diǎn),(1)求圓C的方程;(2)若圓C與直線交于A,B兩點(diǎn),______,求m的值從下列三個(gè)條件中任選一個(gè)補(bǔ)充在上面問題中并作答:條件①:;條件②:圓上一點(diǎn)P到直線的最大距離為;條件③:18.(12分)已知甲射擊的命中率為0.7.乙射擊的命中率為0.8,甲乙兩人的射擊互相獨(dú)立.求:(1)甲乙兩人同時(shí)擊中目標(biāo)的概率;(2)甲乙兩人中至少有一個(gè)人擊中目標(biāo)的概率;(3)甲乙兩人中恰有一人擊中目標(biāo)的概率19.(12分)已知橢圓的離心率為,且過點(diǎn).(1)求橢圓的方程;(2)四邊形的頂點(diǎn)在橢圓上,且對角線,均過坐標(biāo)原點(diǎn),若,求的取值范圍.20.(12分)在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且(1)求證:平面;(2)求平面與平面夾角的余弦值21.(12分)已知直線與圓.(1)當(dāng)直線l恰好平分圓C的周長時(shí),求m的值;(2)當(dāng)直線l被圓C截得的弦長為時(shí),求m的值.22.(10分)已知橢圓左,右頂點(diǎn)分別是,,且,是橢圓上異于,的不同的兩點(diǎn)(1)若,證明:直線必過坐標(biāo)原點(diǎn);(2)設(shè)點(diǎn)是以為直徑的圓和以為直徑的圓的另一個(gè)交點(diǎn),記線段的中點(diǎn)為,若,求動點(diǎn)的軌跡方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】先由等面積法求得的長,再以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,運(yùn)用線面角的向量求解方法可得答案【詳解】如圖,連接交于點(diǎn),過點(diǎn)作于,則平面,則,設(shè),則,則根據(jù)三角形面積得,代入解得以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系則,,設(shè)平面的法向量為,,,則,即,令,得,所以直線與平面所成的角的余弦值為,故選:2、C【解析】先通過復(fù)數(shù)的除法運(yùn)算求出z,進(jìn)而求出虛部.【詳解】由題意,,則z的虛部為1.故選:C.3、A【解析】先把拋物線方程整理成標(biāo)準(zhǔn)方程,進(jìn)而根據(jù)拋物線的焦點(diǎn)坐標(biāo),可得的值.【詳解】拋物線的標(biāo)準(zhǔn)方程為,因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,所以,所以,故選A.【點(diǎn)睛】該題考查的是有關(guān)利用拋物線的焦點(diǎn)坐標(biāo)求拋物線的方程的問題,涉及到的知識點(diǎn)有拋物線的簡單幾何性質(zhì),屬于簡單題目.4、A【解析】由空間向量共面定理構(gòu)造方程求得結(jié)果.【詳解】空間四點(diǎn)共面,但任意三點(diǎn)不共線,,解得:.故選:A.5、B【解析】利用古典概型的概率求法求解.【詳解】從全體三位正整數(shù)中任取一數(shù)共有900種取法,以2為底的對數(shù)也是正整數(shù)的三位數(shù)有,共3個(gè),所以以此數(shù)以2為底的對數(shù)也是正整數(shù)的概率為,故選:B6、A【解析】根據(jù)題意設(shè)圓方程為:,代點(diǎn)即可求出,進(jìn)而求出方程,兩圓方程做差即可求得公共弦所在直線方程,再利用垂徑定理去求弦長.【詳解】設(shè)圓的圓心為,則其標(biāo)準(zhǔn)方程為:,將點(diǎn)代入方程,解得,故方程為:,兩圓,方程作差得其公共弦所在直線方程為:,圓心到該直線的距離為,因此公共弦長為,故選:A.【點(diǎn)睛】本題綜合考查圓的方程及直線與圓,圓與圓位置關(guān)系,屬于中檔題.一般遇見直線與圓相交問題時(shí),常利用垂徑定理解決問題.7、A【解析】根據(jù)橢圓的定義可得,從而得到,則,其中,再根據(jù)對勾函數(shù)的性質(zhì)求出,即可得到方程,從求出橢圓的離心率;【詳解】解:依題意,所以,又,所以,因?yàn)樵谏蠁握{(diào)遞減,所以當(dāng)時(shí)函數(shù)取得最大值,即,即所以,即,所以,解得或(舍去)故選:A8、C【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,進(jìn)而得出短軸長.【詳解】由,可得,所以短軸長為.故選:C.9、D【解析】根據(jù)導(dǎo)函數(shù)大于,原函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導(dǎo)函數(shù)得圖象可得:時(shí),,所以在單調(diào)遞減,排除選項(xiàng)A、B,當(dāng)時(shí),先正后負(fù),所以在先增后減,因選項(xiàng)C是先減后增再減,故排除選項(xiàng)C,故選:D.10、D【解析】利用特殊值排除錯(cuò)誤選項(xiàng),利用函數(shù)單調(diào)性證明正確選項(xiàng).【詳解】時(shí),,但,所以A選項(xiàng)錯(cuò)誤.時(shí),,但,所以B選項(xiàng)錯(cuò)誤.時(shí),,但,所以C選項(xiàng)錯(cuò)誤.在上遞增,所以,即D選項(xiàng)正確.故選:D11、B【解析】,得不到,因?yàn)榭赡芟嘟唬灰偷慕痪€平行即可得到;,,∴和沒有公共點(diǎn),∴,即能得到;∴“”是“”的必要不充分條件.故選B考點(diǎn):必要條件、充分條件與充要條件的判斷.【方法點(diǎn)晴】考查線面平行的定義,線面平行的判定定理,面面平行的定義,面面平行的判定定理,以及充分條件、必要條件,及必要不充分條件的概念,屬于基礎(chǔ)題;并得不到,根據(jù)面面平行的判定定理,只有內(nèi)的兩相交直線都平行于,而,并且,顯然能得到,這樣即可找出正確選項(xiàng).12、A【解析】根據(jù)雙曲線的定義及直角三角形斜邊的中線定理,再結(jié)合雙曲線的離心率公式即可求解.【詳解】如圖所示由題意可知,根據(jù)雙曲線的定義知,是的中點(diǎn)且.在中,是的中點(diǎn),所以,因?yàn)橹本€的斜率為,所以,所以.所以是等邊三角形,.在中,.由雙曲線的定義,得,所以雙曲線的離心率為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】由題意,可得,設(shè),,,根據(jù)是線段的中點(diǎn),求出的坐標(biāo),可得直線的斜率,利用基本不等式即可得結(jié)論【詳解】解:由題意,可得,設(shè),,,,是線段的中點(diǎn),則,,,當(dāng)且僅當(dāng)時(shí)取等號,直線的斜率的最大值為1故答案為:114、②④【解析】由已知可得,可求,,從而判斷①②,求出△的面積可判斷③,設(shè),,利用面積求出點(diǎn)的坐標(biāo),再求邊長,求出可判斷④【詳解】解:設(shè),,,,可得,,兩式相減可得,由題意可得,且,,,,,,故②正確;的焦點(diǎn)到漸近線的距離為1,設(shè)到漸近線的距離為,則,即,,故①錯(cuò)誤,,若,不妨設(shè)在右支上,,又,,則的面積為,故③不正確;設(shè),,,,將代入雙曲線,得,,根據(jù)雙曲線的對稱性,不妨取點(diǎn)的坐標(biāo)為,,,,,為鈍角,為鈍角三角形.故④正確故答案為:②④15、【解析】根據(jù)給定信息,利用三角形重心坐標(biāo)公式求出的重心,再結(jié)合對稱性求出的外心,然后求出歐拉線的方程作答.【詳解】因的頂點(diǎn),,,則的重心,顯然的外心在線段AC中垂線上,設(shè),由得:,解得:,即點(diǎn),直線,化簡整理得:,所以歐拉線的方程為.故答案:16、假【解析】列舉特殊值,判斷真假命題.【詳解】當(dāng)時(shí),,所以,命題“若實(shí)數(shù)a,b滿足,則且”是假命題.故答案為:假三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)圓心在過點(diǎn),的線段的中垂線上,同時(shí)圓心圓心在直線上,可求出圓心的坐標(biāo),進(jìn)而求得半徑,最后求出其標(biāo)準(zhǔn)方程;(2)選①利用用垂徑定理可求得答案,選②根據(jù)圓上一點(diǎn)P到直線的最大距離為可求得答案,選③先利用向量的數(shù)量積可求得,解法就和選①時(shí)相同.【小問1詳解】由題意可知,圓心在點(diǎn)的中垂線上,該中垂線的方程為,于是,由,解得圓心,圓C的半徑所以,圓C的方程為;【小問2詳解】①,因?yàn)?,,所以圓心C到直線l的距離,則,解得,②,圓上一點(diǎn)P到直線的最大距離為,可知圓心C到直線l的距離則,解得,③,因?yàn)?,所以,得,又,所以圓心C到直線l的距離,則,解得18、(1)0.56(2)0.94(3)0.38【解析】(1)根據(jù)獨(dú)立事件的概率公式計(jì)算;(2)結(jié)合對立事件的概率公式、獨(dú)立事件的概率公式計(jì)算(3)利用互斥事件與獨(dú)立事件的概率公式計(jì)算【小問1詳解】設(shè)甲擊中目標(biāo)為事件,乙擊中目標(biāo)為事件,甲乙兩人同時(shí)擊中目標(biāo)的概率;【小問2詳解】甲乙兩人中至少有一個(gè)人擊中目標(biāo)的概率為;【小問3詳解】甲乙兩人中恰有一人擊中目標(biāo)的概率為19、(1)(2)【解析】(1)根據(jù)橢圓的離心率為,且過點(diǎn),由求解;(2)設(shè)直線AC方程為,則直線BD的方程為,分時(shí),與橢圓方程聯(lián)立求得A,B的坐標(biāo),再利用數(shù)量積求解.【小問1詳解】解:因?yàn)闄E圓的離心率為,且過點(diǎn),所以,所以,所以橢圓的方程為;【小問2詳解】設(shè)直線AC的方程為,則直線BD的方程為.當(dāng)時(shí),聯(lián)立,得,不妨設(shè)A,聯(lián)立,得,當(dāng)B時(shí),,,當(dāng)B時(shí),,,當(dāng)時(shí),同理可得上述結(jié)論.綜上,20、(1)證明見解析(2)【解析】(1)先利用正方形和梯形的性質(zhì)證明線面平行,然后再根據(jù)線面平行證明面面平行即可(2)根據(jù)題意建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo)和相關(guān)的向量,然后分別求出平面與平面的一個(gè)法向量,最后求出平面與平面夾角的余弦值【小問1詳解】四邊形是正方形,可得:又平面,平面則有:平面四邊形是梯形,可得:又平面,平面則有:平面又故平面平面【小問2詳解】依題意知兩兩垂直,故以為原點(diǎn),所在的直線分別為軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系.則有:,,,可得:,,設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面與平面的夾角為,則故平面與平面夾角的余弦值為21、(1);(2)1.【解析】(1)將圓C的圓心坐標(biāo)代入直線l的方程計(jì)算作答.(2)由給定條件求出圓心C到直線l的距離,再利用點(diǎn)到直線距離公式計(jì)算作答.【小問1詳解】圓的圓心,半徑,因直線l平分圓C的周長,則直線l過圓心,即,解得,所以m的值是.【小問2詳解】由(1)知,圓C的圓心,半徑,因直線l被圓C截得的弦長為,則有圓心C到直線l的距離,因此,,解得,所以m的值是1.22、(1)證明見解析;(2).【解析】(1)設(shè),首先證明,從而可得到,即得到;進(jìn)而可得到四邊形為平行四邊形;再根據(jù)為的中點(diǎn),即可證明直線必過坐標(biāo)原點(diǎn)(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,消元,寫韋達(dá);根據(jù)條件可求出直線MN過定點(diǎn),從而可得到過定點(diǎn),進(jìn)而可得到點(diǎn)在以為直徑

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論