版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆重慶市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓:,左、右焦點(diǎn)分別為,過(guò)的直線交橢圓于兩點(diǎn),若的最大值為5,則的值是A.1 B.C. D.2.設(shè)等差數(shù)列的前n項(xiàng)和為,且,則()A.64 B.72C.80 D.1443.已知拋物線,過(guò)其焦點(diǎn)且斜率為1的直線交拋物線于A,B兩點(diǎn),若線段AB的中點(diǎn)的橫坐標(biāo)為3,則該拋物線的準(zhǔn)線方程為()A. B.C. D.4.已知x,y是實(shí)數(shù),且,則的最大值是()A. B.C. D.5.已知、分別為雙曲線的左、右焦點(diǎn),且,點(diǎn)P為雙曲線右支一點(diǎn),為的內(nèi)心,若成立,給出下列結(jié)論:①點(diǎn)的橫坐標(biāo)為定值a;②離心率;③;④當(dāng)軸時(shí),上述結(jié)論正確的是()A.①② B.②③C.①②③ D.②③④6.某地為響應(yīng)總書記關(guān)于生態(tài)文明建設(shè)的號(hào)召,大力開(kāi)展“青山綠水”工程,造福于民,擬對(duì)該地某湖泊進(jìn)行治理,在治理前,需測(cè)量該湖泊的相關(guān)數(shù)據(jù).如圖所示,測(cè)得角∠A=23°,∠C=120°,米,則A,B間的直線距離約為(參考數(shù)據(jù))()A.60米 B.120米C.150米 D.300米7.過(guò)雙曲線的右焦點(diǎn)F作一條漸近線的垂線,垂足為M,且FM的中點(diǎn)A在雙曲線上,則雙曲線離心率e等于()A. B.C. D.8.已知雙曲線的左右焦點(diǎn)分別為、,過(guò)作的一條漸近線的垂線,垂足為,若的面積為,則的漸近線方程為A. B.C. D.9.下列函數(shù)求導(dǎo)運(yùn)算正確的個(gè)數(shù)為()①;②;③;④.A.1 B.2C.3 D.410.已知圓:,點(diǎn),則點(diǎn)到圓上點(diǎn)的最小距離為()A.1 B.2C. D.11.已知點(diǎn)在拋物線:上,則的焦點(diǎn)到其準(zhǔn)線的距離為()A. B.C.1 D.212.將6位志愿者分成4組,其中兩個(gè)組各2人,另兩個(gè)組各1人,分赴廣交會(huì)的四個(gè)不同地方服務(wù),不同的分配方案有()種A.· B.·C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準(zhǔn)線方程是______14.已知圓錐的側(cè)面積為,若其過(guò)軸的截面為正三角形,則該圓錐的母線的長(zhǎng)為_(kāi)__________.15.已知等差數(shù)列中,,,則______________16.設(shè)拋物線C:的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為M,P是C上一點(diǎn),若|PF|=5,則|PM|=__.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,底面ABCD,,,且,,點(diǎn)E為棱PC的動(dòng)點(diǎn).(1)當(dāng)點(diǎn)E是棱PC的中點(diǎn)時(shí),求直線BE與平面PBD所成角的正弦值;(2)若E為棱PC上任一點(diǎn),滿足,求二面角P-AB-E的余弦值.18.(12分)已知橢圓的左焦點(diǎn)為F,右頂點(diǎn)為,M是橢圓上一點(diǎn).軸且(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)直線與橢圓C交于E,H兩點(diǎn),點(diǎn)G在橢圓C上,且四邊形平行四邊形(其中O為坐標(biāo)原點(diǎn)),求19.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)在時(shí)的最大值和最小值;(2)若函數(shù)在區(qū)間存在極小值,求a的取值范圍.20.(12分)已知圓的圓心為,且經(jīng)過(guò)點(diǎn).(1)求圓的標(biāo)準(zhǔn)方程;(2)已知直線與圓相交于、兩點(diǎn),求.21.(12分)已知數(shù)列是等差數(shù)列,其前n項(xiàng)和為,,,數(shù)列滿足(且),.(1)求和的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.22.(10分)已知等差數(shù)列滿足,.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由題意可知橢圓是焦點(diǎn)在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過(guò)橢圓焦點(diǎn)的弦中通徑的長(zhǎng)最短,可知當(dāng)AB垂直于x軸時(shí)|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【詳解】由0<b<2可知,焦點(diǎn)在x軸上,∵過(guò)F1的直線l交橢圓于A,B兩點(diǎn),則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當(dāng)AB垂直x軸時(shí)|AB|最小,|BF2|+|AF2|值最大,此時(shí)|AB|=b2,則5=8﹣b2,解得b,故選D【點(diǎn)睛】本題考查直線與圓錐曲線的關(guān)系,考查了橢圓的定義,考查橢圓的通徑公式,考查計(jì)算能力,屬于中檔題2、B【解析】利用等差數(shù)列下標(biāo)和性質(zhì),求得,再用等差數(shù)列前項(xiàng)和公式即可求解.【詳解】根據(jù)等差數(shù)列的下標(biāo)和性質(zhì),,解得,.故選:B.3、B【解析】設(shè),進(jìn)而根據(jù)題意,結(jié)合中點(diǎn)弦的問(wèn)題得,進(jìn)而再求解準(zhǔn)線方程即可.【詳解】解:根據(jù)題意,設(shè),所以①,②,所以,①②得:,即,因?yàn)橹本€AB的斜率為1,線段AB的中點(diǎn)的橫坐標(biāo)為3,所以,即,所以拋物線,準(zhǔn)線方程為.故選:B4、D【解析】將方程化為圓的標(biāo)準(zhǔn)方程,則的幾何意義是圓上一點(diǎn)與點(diǎn)連線的斜率,進(jìn)而根據(jù)直線與圓相切求得答案.【詳解】方程可化為,表示以為圓心,為半徑的圓,的幾何意義是圓上一點(diǎn)與點(diǎn)A連線的斜率,設(shè),即,當(dāng)此直線與圓相切時(shí),斜率最大或最小,當(dāng)切線位于切線AB時(shí)斜率最大.此時(shí),,,所以的最大值為.故選:D5、C【解析】利用雙曲線的定義、幾何性質(zhì)以及題意對(duì)選項(xiàng)逐個(gè)分析判斷即可【詳解】對(duì)于①,設(shè)內(nèi)切圓與的切點(diǎn)分別為,則由切線長(zhǎng)定理可得,因?yàn)椋?,所以,所以點(diǎn)的坐標(biāo)為,所以點(diǎn)的橫坐標(biāo)為定值a,所以①正確,對(duì)于②,因?yàn)?,所以,化?jiǎn)得,即,解得,因?yàn)?,所以,所以②正確,對(duì)于③,設(shè)的內(nèi)切圓半徑為,由雙曲線的定義可得,,因?yàn)?,,所以,所以,所以③正確,對(duì)于④,當(dāng)軸時(shí),可得,此時(shí),所以,所以④錯(cuò)誤,故選:C6、C【解析】應(yīng)用正弦定理有,結(jié)合已知條件即可求A,B間的直線距離.【詳解】由題設(shè),,在△中,,即,所以米.故選:C7、A【解析】根據(jù)題意可表示出漸近線方程,進(jìn)而可知的斜率,表示出直線方程,求出的坐標(biāo)進(jìn)而求得A點(diǎn)坐標(biāo),代入雙曲線方程整理求得和的關(guān)系式,進(jìn)而求得離心率【詳解】:由題意設(shè)相應(yīng)的漸近線:,則根據(jù)直線的斜率為,則的方程為,聯(lián)立雙曲線漸近線方程求出,則,,則的中點(diǎn),把中點(diǎn)坐標(biāo)代入雙曲線方程中,即,整理得,即,求得,即離心率為,故答案為:8、D【解析】求得,根據(jù)的面積列方程,由此求得,進(jìn)而求得雙曲線的漸近線方程.【詳解】依題意,雙曲線的一條漸近線為,則,所以,所以,所以.所以雙曲線漸近線方程為.故選:D【點(diǎn)睛】本小題主要考查雙曲線漸近線的有關(guān)計(jì)算,屬于中檔題.9、A【解析】根據(jù)導(dǎo)數(shù)的運(yùn)算法則和導(dǎo)數(shù)的基本公式計(jì)算后即可判斷【詳解】解:①,故錯(cuò)誤;②,故正確;③,故錯(cuò)誤;④,故錯(cuò)誤.所以求導(dǎo)運(yùn)算正確的個(gè)數(shù)為1.故選:A.10、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點(diǎn)到圓上點(diǎn)的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點(diǎn)到圓上點(diǎn)的最小距離為.故選:C.11、B【解析】由點(diǎn)在拋物線上,求得參數(shù),焦點(diǎn)到其準(zhǔn)線的距離即為.【詳解】由點(diǎn)在拋物線上,易知,,故焦點(diǎn)到其準(zhǔn)線的距離為.故選:B.12、B【解析】先按要求分為四組,再四個(gè)不同地方,四個(gè)組進(jìn)行全排列.【詳解】?jī)蓚€(gè)組各2人,兩個(gè)組各1人,屬于部分平均分組,要除以平均分組的組數(shù)的全排列,故分組方案有種,再將分得的4組,分配到四個(gè)不同地方服務(wù),則不同的分配方案有種.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可得p=4,所以準(zhǔn)線方程,填14、【解析】利用圓錐的結(jié)構(gòu)特征及側(cè)面積公式即得.【詳解】設(shè)圓錐的底面半徑為r,圓錐的母線為l,又圓錐過(guò)軸的截面為正三角形,圓錐的側(cè)面積為,∴,∴.故答案為:.15、【解析】設(shè)等差數(shù)列的公差為,依題意得到方程,求出公差,再根據(jù)等差數(shù)列通項(xiàng)公式計(jì)算可得;【詳解】解:設(shè)等差數(shù)列的公差為,因?yàn)?,,所以,所以,所以故答案為?6、【解析】根據(jù)拋物線的性質(zhì)及拋物線方程可求坐標(biāo),進(jìn)而得解.【詳解】由拋物線的方程可得焦點(diǎn),準(zhǔn)線,由題意可得,設(shè),有拋物線的性質(zhì)可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)由題意可得兩兩垂直,所以以為原點(diǎn),以所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解,(2)設(shè),表示出點(diǎn)的坐標(biāo),然后根據(jù)求出的值,從而可得點(diǎn)的坐標(biāo),然后利用空間向量求二面角【小問(wèn)1詳解】因?yàn)榈酌鍭BCD,平面,所以因?yàn)?,所以兩兩垂直,所以以為原點(diǎn),以所在的直線分別為軸,建立空間直角坐標(biāo)系,如圖所示,因?yàn)?,,點(diǎn)E為棱PC的動(dòng)點(diǎn),所以,所以,,設(shè)平面的法向量為,則,令,則設(shè)直線BE與平面PBD所成角為,則,所以直線BE與平面PBD所成角的正弦值為,【小問(wèn)2詳解】,因?yàn)镋為棱PC上任一點(diǎn),所以設(shè),所以,因?yàn)椋?,解得,所以,設(shè)平面的法向量為,則,令,則,取平面的一個(gè)法向量為,設(shè)二面角P-AB-E的平面角為,由圖可知為銳角,則,所以二面角P-AB-E余弦值為18、(1)(2)【解析】(1)根據(jù)橢圓的簡(jiǎn)單幾何性質(zhì)即可求出;(2)設(shè),聯(lián)立與橢圓方程,求出,再根據(jù)平行四邊形的性質(zhì)求出點(diǎn)的坐標(biāo),然后由點(diǎn)G在橢圓C上,可求出,從而可得【小問(wèn)1詳解】∵橢圓C的右頂點(diǎn)為,∴,∵軸,且,∴,∴,所以橢圓C的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】設(shè),將直線代入,消去y并整理得,由,得.(*)由根與系數(shù)的關(guān)系可得,∴,∵四邊形為平行四邊形,∴,得,將G點(diǎn)坐標(biāo)代人橢圓C的方程得,滿足(*)式∴19、(1)最大值為9,最小值為;(2).【解析】(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而確定在的極值、端點(diǎn)值,比較它們的大小即可知最值.(2)討論參數(shù)a的符號(hào),利用導(dǎo)數(shù)研究的單調(diào)性,結(jié)合已知區(qū)間的極值情況求參數(shù)a的范圍即可.【小問(wèn)1詳解】由題,時(shí),,則,令,得或1,則時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.∴在時(shí)取極大值,在時(shí)取極小值,又,,綜上,在區(qū)間上取得的最大值為9,最小值為.小問(wèn)2詳解】,且,當(dāng)時(shí),單調(diào)遞增,函數(shù)沒(méi)有極值;當(dāng)時(shí),時(shí),單調(diào)遞增;時(shí),單調(diào)遞減;時(shí),,單調(diào)遞增.∴在取得極大值,在取得極小值,則;當(dāng)時(shí),時(shí),單調(diào)遞增;時(shí),單調(diào)遞減;時(shí),,單調(diào)遞增.∴在取得極大值,在取得極小值,由得:.綜上,函數(shù)在區(qū)間存在極小值時(shí)a的取值范圍是.20、(1);(2).【解析】(1)求出圓的半徑長(zhǎng),結(jié)合圓心坐標(biāo)可得出圓的標(biāo)準(zhǔn)方程;(2)求出圓心到直線的距離,利用勾股定理可求得.小問(wèn)1詳解】解:圓的半徑為,因此,圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】解:圓心到直線的距離為,因此,.21、(1),;(2).【解析】(1)根據(jù),列方程組即可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年茂名市電白區(qū)電城中學(xué)招聘合同制教師備考題庫(kù)及一套完整答案詳解
- 半年個(gè)人工作總結(jié)10篇
- 2025年浦發(fā)銀行昆明分行公開(kāi)招聘?jìng)淇碱}庫(kù)及一套參考答案詳解
- 2026年興業(yè)銀行廣州分行校園招聘?jìng)淇碱}庫(kù)及1套完整答案詳解
- 十八項(xiàng)核心制度
- 2025國(guó)考銀行結(jié)構(gòu)化面試試題及答案解析
- 2025年關(guān)于為淄博市檢察機(jī)關(guān)公開(kāi)招聘聘用制書記員的備考題庫(kù)含答案詳解
- 2025年中國(guó)科學(xué)院力學(xué)研究所SKZ專項(xiàng)辦公室人員招聘?jìng)淇碱}庫(kù)及一套答案詳解
- 2025年重慶大學(xué)工業(yè)母機(jī)創(chuàng)新研究院勞務(wù)派遣工程師招聘?jìng)淇碱}庫(kù)(長(zhǎng)期有效)完整答案詳解
- 黑龍江公安警官職業(yè)學(xué)院《戰(zhàn)略管理》2025 學(xué)年第二學(xué)期期末試卷
- 中華聯(lián)合財(cái)產(chǎn)保險(xiǎn)股份有限公司2026年校園招聘?jìng)淇碱}庫(kù)及一套完整答案詳解
- 詩(shī)經(jīng)中的愛(ài)情課件
- 2025年煙花爆竹經(jīng)營(yíng)單位安全管理人員考試試題及答案
- 2025天津大學(xué)管理崗位集中招聘15人參考筆試試題及答案解析
- 2025年云南省人民檢察院聘用制書記員招聘(22人)考試筆試參考題庫(kù)及答案解析
- TCAMET02002-2019城市軌道交通預(yù)埋槽道及套筒技術(shù)規(guī)范
- 24- 解析:吉林省長(zhǎng)春市2024屆高三一模歷史試題(解析版)
- 臨床護(hù)士工作現(xiàn)狀分析
- 電力線路架設(shè)安全操作方案
- 橋臺(tái)鋼筋專項(xiàng)施工方案
- (正式版)DB65∕T 4229-2019 《肉牛、肉羊全混合日糧(∕TMR)攪拌機(jī)》
評(píng)論
0/150
提交評(píng)論