版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省張家口市尚義一中2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知空間向量,,,若,,共面,則m+2t=()A.-1 B.0C.1 D.-62.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.3.在三棱錐中,,,則異面直線PC與AB所成角的余弦值是()A. B.C. D.4.在平面直角坐標(biāo)系中,拋物線上點到焦點的距離為3,則焦點到準線的距離為()A. B.C.1 D.5.已知橢圓C:的一個焦點為(0,-2),則k的值為()A.5 B.3C.9 D.256.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則等于()A. B.C.14 D.167.在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護衛(wèi)艦的距離為()A.海里 B.海里C.海里 D.海里8.若雙曲線的離心率為,則其漸近線方程為A.y=±2x B.y=C. D.9.已知等比數(shù)列滿足,則q=()A.1 B.-1C.3 D.-310.若命題“對任意,使得成立”是真命題,則實數(shù)a的取值范圍是()A. B.C. D.11.下列推理中屬于歸納推理且結(jié)論正確的是()A.由,求出,,,…,推斷:數(shù)列的前項和B.由滿足對都成立,推斷:為奇函數(shù)C.由半徑為的圓的面積,推斷單位圓的面積D.由,,,…,推斷:對一切,12.工業(yè)生產(chǎn)者出廠價格指數(shù)(PRoduceRPRiceIndexfoRIndustRialPRoducts,簡稱PPI)是反映工業(yè)企業(yè)產(chǎn)品第一次出售時的出廠價格的變化趨勢和變動幅度,是反映某一時期生產(chǎn)領(lǐng)域價格變動情況的重要經(jīng)濟指標(biāo),也是制定有關(guān)經(jīng)濟政策和國民經(jīng)濟核算的重要依據(jù).根據(jù)下面提供的我國2020年1月—2021年11月的工業(yè)生產(chǎn)者出廠價格指數(shù)的月度同比(將上一年同月作為基期進行對比的價格指數(shù))和月度環(huán)比(將上月作為基期進行對比的價格指數(shù))漲跌情況的折線圖判斷,以下結(jié)論正確的()A.2020年各月的PPI在逐月增大B.2020年各月的PPI均高于2019年同期水平C.2021年1月—11月各月的PPI在逐月減小D.2021年1月—11月各月的PPI均高于2020年同期水平二、填空題:本題共4小題,每小題5分,共20分。13.若實數(shù)x,y滿足約束條件,則的最大值是_________.14.若滿足約束條件,則的最小值為________.15.函數(shù),其導(dǎo)函數(shù)為函數(shù),則__________16.若點到點的距離比它到定直線的距離小1,則點滿足的方程為_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點,直線,圓.(1)若連接點與圓心的直線與直線垂直,求實數(shù)的值;(2)若直線與圓相交于兩點,且弦的長為,求實數(shù)的值18.(12分)如圖,在三棱柱中,平面ABC,,,,點D,E分別在棱和棱上,且,,M為棱中點(1)求證:;(2)求直線AB與平面所成角的正弦值19.(12分)已知等差數(shù)列的前三項依次為,4,,前項和為,且.(1)求的通項公式及的值;(2)設(shè)數(shù)列的通項,求證是等比數(shù)列,并求的前項和.20.(12分)已知函數(shù).(I)若曲線在點處的切線方程為,求的值;(II)若,求的單調(diào)區(qū)間.21.(12分)已知三條直線:,:,:(是常數(shù)),.(1)若,,相交于一點,求的值;(2)若,,不能圍成一個三角形,求的值:(3)若,,能圍成一個直角三角形,求的值.22.(10分)已知雙曲線C:(,)的一條漸近線的方程為,雙曲線C的右焦點為,雙曲線C的左、右頂點分別為A,B(1)求雙曲線C的方程;(2)過右焦點F的直線l與雙曲線C的右支交于P,Q兩點(點P在x軸的上方),直線AP的斜率為,直線BQ的斜率為,證明:為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)向量共面列方程,化簡求得.【詳解】,所以不共線,由于,,共面,所以存在,使,即,,,,,即.故選:D2、D【解析】設(shè)直線傾斜角為,則,即可求出.【詳解】設(shè)直線的傾斜角為,則,又因為,所以.故選:D.3、A【解析】分別取、、的中點、、,連接、、、、,由題意結(jié)合平面幾何的知識可得、、或其補角即為異面直線PC與AB所成角,再由余弦定理即可得解.【詳解】分別取、、的中點、、,連接、、、、,如圖:由可得,所以,在,,可得由中位線的性質(zhì)可得且,且,所以或其補角即為異面直線PC與AB所成角,在中,,所以異面直線AB與PC所成角的余弦值為.故選:A.【點睛】思路點睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面直線的問題化歸為共面直線問題來解決,具體步驟如下:(1)平移:平移異面直線中的一條或兩條,作出異面直線所成的角;(2)認定:證明作出的角就是所求異面直線所成的角;(3)計算:求該角的值,常利用解三角形;(4)取舍:由異面直線所成的角的取值范圍是,當(dāng)所作的角為鈍角時,應(yīng)取它的補角作為兩條異面直線所成的角4、D【解析】根據(jù)給定條件求出拋物線C的焦點、準線,再利用拋物線的定義求出a值計算作答.【詳解】拋物線的焦點,準線,依題意,由拋物線定義得,解得,所以拋物線焦點到準線的距離為.故選:D5、A【解析】由題意可得焦點在軸上,由,可得k的值.【詳解】∵橢圓的一個焦點是,∴,∴,故選:A6、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得正確答案.【詳解】是函數(shù)的兩個不同零點,所以,由于數(shù)列是等比數(shù)列,所以.故選:C7、A【解析】利用正弦定理可求解.【詳解】設(shè)甲驅(qū)逐艦、乙護衛(wèi)艦、航母所在位置分別為A,B,C,則,,.在△ABC中,由正弦定理得,即,解得,即甲驅(qū)逐艦與乙護衛(wèi)艦的距離為海里故選:A8、B【解析】雙曲線的離心率為,漸進性方程為,計算得,故漸進性方程為.【考點定位】本小題考查了離心率和漸近線等雙曲線的性質(zhì).9、C【解析】根據(jù)已知條件,利用等比數(shù)列的基本量列出方程,即可求得結(jié)果.【詳解】因為,故可得;解得.故選:C.10、A【解析】由題得對任意恒成立,求出的最大值即可.【詳解】解:由題得對任意恒成立,(當(dāng)且僅當(dāng)時等號成立)所以故選:A11、A【解析】根據(jù)歸納推理是由特殊到一般,推導(dǎo)結(jié)論可得結(jié)果.【詳解】對于A,由,求出,,,…,推斷:數(shù)列的前項和,是由特殊推導(dǎo)出一般性的結(jié)論,且,故A正確;B和C屬于演繹推理,故不正確;對于D,屬于歸納推理,但時,結(jié)論不正確,故D不正確.故選:A.12、D【解析】根據(jù)折線圖中同比、環(huán)比的正負情況,結(jié)合各選項的描述判斷正誤.【詳解】A:2020年前5個月PPI在逐月減小,錯誤;B:2020年各月同比為負值,即低于2019年同期水平,錯誤;C:2021年1月—11月各月的PPI環(huán)比為正值,即逐月增大,錯誤;D:2021年1月—11月各月的PPI同比為正值,即高于2020年同期水平,正確.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】畫出可行域,通過平移基準直線到可行域邊界位置,由此求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,平移基準直線到點時,取得最大值為.故答案為:14、5【解析】作出可行域,作直線,平移該直線可得最優(yōu)解【詳解】作出可行域,如圖內(nèi)部(含邊界),作直線,直線中是直線的縱截距,代入得,即平移直線,當(dāng)直線過點時取得最小值5故答案為:515、【解析】根據(jù)解析式,可求得解析式,代入數(shù)據(jù),即可得答案.詳解】∵,∴,∴.故答案為:.16、【解析】根據(jù)拋物線的定義可得動點的軌跡方程【詳解】點到點的距離比它到直線的距離少1,所以點到點的距離與到直線的距離相等,所以其軌跡為拋物線,焦點為,準線為,所以方程為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)3(2)實數(shù)的值為和【解析】(1)由直線垂直,斜率乘積為可得值;(2)求出加以到直線的距離,由勾股定理求弦長,從而可得參數(shù)值【小問1詳解】圓,,,,,,【小問2詳解】圓半徑為,設(shè)圓心到直線的距離為,則又由點到直線距離公式得:化簡得:,解得:或所以實數(shù)的值為和.18、(1)證明見解析;(2).【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結(jié)論;(2)構(gòu)建空間直角坐標(biāo)系,確定相關(guān)點坐標(biāo),進而求的方向向量、面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求直線與平面所成角的正弦值.【小問1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點,則,又,則平面,由平面,因此,.【小問2詳解】以為原點,以,,為軸、軸、軸的正方向建立空間直角坐標(biāo)系,如圖所示,可得:,,,,,,.∴,,,,設(shè)為面的法向量,則,令得,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.19、(1),(2)證明見解析,【解析】(1)直接利用等差中項的應(yīng)用求出的值,進一步求出數(shù)列的通項公式和的值;(2)利用等比數(shù)列的定義即可證明數(shù)列為等比數(shù)列,進一步求出數(shù)列的和.【小問1詳解】等差數(shù)列的前三項依次為,4,,∴,解得;故首項為2,公差為2,故,前項和為,且,整理得,解得或-11(負值舍去).∴,k=10.【小問2詳解】由(1)得:,故(常數(shù)),故數(shù)列是等比數(shù)列;∴.20、(Ⅰ)(Ⅱ)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【解析】(Ⅰ)求出函數(shù)的導(dǎo)函數(shù),根據(jù)題意可得得到關(guān)于的方程組,解得;(Ⅱ)求出函數(shù)的導(dǎo)函數(shù),解得函數(shù)的單調(diào)遞增區(qū)間,解得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:(Ⅰ)因為函數(shù)在點處的切線方程為解得(Ⅱ)令,得或.因為,所以時,;時,.故在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【點睛】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.21、(1)(2)或或(3)或【解析】(1)由二條已知直線求交點,代入第三條直線即可;(2)不能圍成一個三角形,過二條已知直線的交點,或者與它們平行;(3)由直線互相垂直得,斜率之積為-1.【小問1詳解】顯然,相交,由得交點,由點代入得所以當(dāng),,相交時,.【小問2詳解】過定點,因為,,不能圍成三角形,所以,或與平行,或與平行,所以,或,或.【小問3詳解】顯然與不垂直,所以,且或所以的值為或22、(1);(2)證明見解析.【解析】(1)由題可得,,即求;(2)由題可設(shè)直線方程與雙曲線方程聯(lián)立,利用韋達定理法即證【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025恒豐銀行南京分行社會招聘29人筆試重點試題及答案解析
- 2025湖北鄂州市華容區(qū)屬國有企業(yè)招聘7人筆試重點試題及答案解析
- 2026年湖南電子科技職業(yè)學(xué)院單招職業(yè)傾向性測試題庫附答案
- 2026年陜西財經(jīng)職業(yè)技術(shù)學(xué)院單招(計算機)考試參考題庫必考題
- 2025江西南昌市環(huán)境工程評估中心勞務(wù)派遣招聘1人考試核心試題及答案解析
- 2025大連理工大學(xué)附屬幼兒園招聘備考筆試題庫及答案解析
- 2025南昌華路建設(shè)咨詢監(jiān)理有限公司福建福州招聘1人備考題庫附答案
- 2025江西吉安市井岡山市人民醫(yī)院面向社會招聘駕駛員1人考試參考題庫附答案
- 2025中國農(nóng)業(yè)科學(xué)院中原研究中心招聘2人筆試重點試題及答案解析
- 2025湖南郴州市第三人民醫(yī)院招聘2人考試參考題庫附答案
- 《學(xué)前教育學(xué)》課程教學(xué)大綱
- 2024年廣東省深圳市羅湖區(qū)高一上學(xué)期期末化學(xué)試題及答案
- DB11∕T 1678-2019 城市軌道交通廣告設(shè)施設(shè)置規(guī)范
- 2024新版(北京版)三年級英語上冊單詞帶音標(biāo)
- 松下-GF2-相機說明書
- 工程維保及售后服務(wù)方案
- 醫(yī)院科室主任的工作總結(jié)
- 附表:醫(yī)療美容主診醫(yī)師申請表
- 畢節(jié)市織金縣化起鎮(zhèn)污水處理工程環(huán)評報告
- 黑布林英語閱讀初一年級16《柳林風(fēng)聲》譯文和答案
- 河流動力學(xué)-同濟大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
評論
0/150
提交評論