2026屆福建省莆田六中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2026屆福建省莆田六中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2026屆福建省莆田六中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2026屆福建省莆田六中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2026屆福建省莆田六中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆福建省莆田六中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若a>b,c>d,則下列不等式中一定正確的是()A. B.C. D.2.在直三棱柱中,,M,N分別是,的中點,,則AN與BM所成角的余弦值為()A. B.C. D.3.從某個角度觀察籃球(如圖甲),可以得到一個對稱的平面圖形,如圖乙所示,籃球的外輪廓為圓,將籃球表面的粘合線視為坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓的交點將圓的周長八等分,且,則該雙曲線的離心率為()A. B.C.2 D.4.命題“存在,使得”的否定為()A.存在, B.對任意,C.對任意, D.對任意,5.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列說法正確的是()A.是函數(shù)的極大值點B.函數(shù)在區(qū)間上單調(diào)遞增C.是函數(shù)的最小值點D.曲線在處切線的斜率小于零6.設(shè)點是點,,關(guān)于平面的對稱點,則()A.10 B.C. D.387.?dāng)?shù)列滿足,,,則數(shù)列的前10項和為()A.60 B.61C.62 D.638.下列直線中,與直線垂直的是()A. B.C. D.9.已知p:,那么p的一個充分不必要條件是()A. B.C. D.10.在等差數(shù)列中,,,則公差A(yù).1 B.2C.3 D.411.在三棱柱中,,,,則這個三棱柱的高()A1 B.C. D.12.在中,,則邊的長等于()A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列滿足且,則________.數(shù)列的通項=________.14.設(shè)與是定義在同一區(qū)間上的兩個函數(shù),若函數(shù)在上有兩個不同的零點,則稱與在上是“關(guān)聯(lián)函數(shù)”.若與在上是“關(guān)聯(lián)函數(shù)”,則實數(shù)的取值范圍是____________.15.?dāng)?shù)學(xué)家華羅庚說:“數(shù)缺形時少直觀,形少數(shù)時難入微”,事實上,很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決.例如:與相關(guān)的代數(shù)問題,可以轉(zhuǎn)化為點與點之間的距離的幾何問題.結(jié)合上述觀點:對于函數(shù),的最小值為______16.曲線在點處的切線的方程為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為直角梯形,,平面,,.(1)求證:平面;(2)求平面與平面所成銳二面角的余弦值.18.(12分)已知,其中.(1)若,求在處的切線方程;(2)若是函數(shù)的極小值點,求函數(shù)在區(qū)間上的最值;(3)討論函數(shù)的單調(diào)性.19.(12分)如圖所示,在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=(1)求證:EF∥平面ADD1A1;(2)求平面EFD與平面DEC的夾角的余弦值;(3)在線段A1D1上是否存在點M,使得BM⊥平面EFD?若存在,求出的值;若不存在,請說明理由20.(12分)某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):單價(元)1819202122銷量(冊)6156504845(l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:(2)預(yù)計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應(yīng)定為多少元?附:,,,.21.(12分)已知雙曲線的左、右焦點分別為,,動點M滿足(1)求動點M的軌跡方程;(2)若動點M在雙曲線C上,設(shè)雙曲線C的左支上有兩個不同的點P,Q,點,且,直線NQ與雙曲線C交于另一點B.證明:動直線PB經(jīng)過定點22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)時,求函數(shù)在內(nèi)的零點個數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)不等式的性質(zhì)及反例判斷各個選項.【詳解】因為c>d,所以,所以,所以B正確;時,不滿足選項A;時,,且,所以不滿足選項CD;故選:B2、D【解析】構(gòu)建空間直角坐標(biāo)系,根據(jù)已知條件求AN與BM對應(yīng)的方向向量,應(yīng)用空間向量夾角的坐標(biāo)表示求AN與BM所成角的余弦值.【詳解】建立如下圖所示的空間直角坐標(biāo)系,∴,,,,∴,,∴,所以AN與BM所成角的余弦值為.故選:D3、B【解析】設(shè)出雙曲線方程,把雙曲線上的點的坐標(biāo)表示出來并代入到方程中,找到的關(guān)系即可求解.【詳解】以O(shè)為原點,AD所在直線為x軸建系,不妨設(shè),則該雙曲線過點且,將點代入方程,故離心率為,故選:B【點睛】本題考查已知點在雙曲線上求雙曲線離心率的方法,屬于基礎(chǔ)題目4、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結(jié)論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.5、B【解析】根據(jù)導(dǎo)函數(shù)的圖象,得到函數(shù)的單調(diào)區(qū)間與極值點,即可判斷;【詳解】解:由導(dǎo)函數(shù)的圖象可知,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)或時,則在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在處取得極小值即最小值,所以是函數(shù)的極小值點與最小值點,因為,所以曲線在處切線的斜率大于零,故選:B6、A【解析】寫出點坐標(biāo),由對稱性易得線段長【詳解】點是點,,關(guān)于平面的對稱點,的橫標(biāo)和縱標(biāo)與相同,而豎標(biāo)與相反,,,,直線與軸平行,,故選:A7、B【解析】討論奇偶性,應(yīng)用等差、等比前n項和公式對作分組求和即可.【詳解】當(dāng)且為奇數(shù)時,,則,當(dāng)且為偶數(shù)時,,則,∴.故選:B.8、C【解析】,,若,則,項,符合條件,故選9、C【解析】按照充分不必要條件依次判斷4個選項即可.【詳解】A選項:,錯誤;B選項:,錯誤;C選項:,,正確;D選項:,錯誤.故選:C.10、B【解析】由,將轉(zhuǎn)化為表示,結(jié)合,即可求解.【詳解】,.故選:B.【點睛】本題考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.11、D【解析】先求出平面ABC的法向量,然后將高看作為向量在平面ABC的法向量上的投影的絕對值,則答案可求.【詳解】設(shè)平面ABC的法向量為,而,,則,即有,不妨令,則,故,設(shè)三棱柱的高為h,則,故選:D.12、A【解析】由余弦定理求解【詳解】由余弦定理,得,即,解得(負(fù)值舍去)故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.5②.【解析】設(shè),根據(jù)題意得到數(shù)列是等差數(shù)列,求得,得到,利用,結(jié)合“累加法”,即可求得.【詳解】解:由題意,數(shù)列滿足,所以當(dāng)時,,,解得,設(shè),則,且,所以數(shù)列是等差數(shù)列,公差為,首項為,所以,即,所以,當(dāng)時,可得,其中也滿足,所以數(shù)列的通項公式為.故答案為:;.14、【解析】令得,設(shè)函數(shù),則直線與函數(shù)在區(qū)間上的圖象有兩個交點,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,利用數(shù)形結(jié)合思想可求得實數(shù)的取值范圍.【詳解】令得,設(shè)函數(shù),則直線與函數(shù)在區(qū)間上的圖象有兩個交點,,令,可得,列表如下:極小值,,如圖所示:由圖可知,當(dāng)時,直線與函數(shù)在區(qū)間上的圖象有兩個交點,因此,實數(shù)的取值范圍是.故答案為:.15、【解析】根據(jù)題意得,表示點與點與距離之和的最小值,再找對稱點求解即可.【詳解】函數(shù),表示點與點與距離之和的最小值,則點在軸上,點關(guān)于軸的對稱點,所以,所以的最小值為:.故答案為:.16、【解析】求出導(dǎo)函數(shù),得切線斜率后可得切線方程【詳解】,∴切線斜率為,切線方程為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】建立空間直角坐標(biāo)系.(1)方法一,利用向量的方法,通過計算,,證得,,由此證得平面.方法二,利用幾何法,通過平面證得,結(jié)合證得,由此證得平面.(2)通過平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】如圖,以為原點建立空間直角坐標(biāo)系,可得,,,.(1)證明法一:因為,,,所以,,所以,,,平面,平面,所以平面.證明法二:因為平面,平面,所以,又因為,即,,平面,平面,所以平面.(2)由(1)知平面的一個法向量,設(shè)平面的法向量,又,,且所以所以平面的一個法向量為,所以,所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1);(2)最大值為5,最小值為;(3)答案見解析.【解析】(1)求出導(dǎo)函數(shù),進而根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,然后求出切線方程;(2)根據(jù)求出a,進而求出函數(shù)的單調(diào)區(qū)間,然后求出函數(shù)的最值;(3)先求出導(dǎo)函數(shù),然后討論a的取值范圍,進而求出函數(shù)的單調(diào)區(qū)間.【小問1詳解】當(dāng)時,,,切點坐標(biāo)為,,切線的斜率為,切線方程為,即.【小問2詳解】,是函數(shù)的極小值點,,即,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為,,函數(shù)在區(qū)間上的最大值為5,最小值為.【小問3詳解】函數(shù)的定義域為,,令得,.①當(dāng)時,,函數(shù)在R上單調(diào)遞增;②當(dāng)時,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為;③當(dāng)時,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為.綜上:時,,函數(shù)R上單調(diào)遞增;時,的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;時,的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.19、(1)證明見解析;(2);(3)不存在;理由見解析【解析】(1)連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO,根據(jù)判定定理證明四邊形AEFO是平行四邊形,進而得到線面平行;(2)建立坐標(biāo)系,求出兩個面的法向量,求得兩個法向量的夾角的余弦值,進而得到二面角的夾角的余弦值;(3)假設(shè)在線段A1D1上存在一點M,使得BM⊥平面EFD,設(shè)出點M的坐標(biāo),由第二問得到平面EFD的一個法向量,判斷出和該法向量不平行,故不存在滿足題意的點M.【詳解】(1)證明:連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO因為F是A1C的中點,所以O(shè)F∥CD,OF=CD因AE∥CD,AE=CD,所以O(shè)F∥AE,OF=AE所以四邊形AEFO是平行四邊形所以EF∥AO因為EF?平面ADD1A1,AO?平面ADD1A1,所以EF∥平面ADD1A1(2)以點A為坐標(biāo)原點,直線AB,AD,AA1分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,因為點E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=,所以B(,0,0),D(0,2,0),E,F(xiàn)所以=,=(0,1,1)設(shè)平面EFD的法向量為,則即令y=1,則z=-1,x=2所以,由題知,平面DEC的一個法向量為m=(0,0,1),所以cos<,>==所以平面EFD與平面DEC的夾角的余弦值是(3)假設(shè)在線段A1D1上存在一點M,使得BM⊥平面EFD設(shè)點M的坐標(biāo)為(0,t,2)(0≤t≤2),則=(,t,2)因為平面EFD的一個法向量為,而與不平行,所以在線段A1D1上不存在點M,使得BM⊥平面EFD20、(1)(2)當(dāng)單價應(yīng)定為22.5元時,可獲得最大利潤【解析】(l)先計算的平均值,再代入公式計算得到(2)計算利潤為:計算最大值.【詳解】解:(1),,,所以對的回歸直線方程為:(2)設(shè)獲得的利潤為,,因為二次函數(shù)的開口向下,所以當(dāng)時,取最大值,所以當(dāng)單價應(yīng)定為22.5元時,可獲得最大利潤【點睛】本題考查了回歸方程,函數(shù)的最值,意在考查學(xué)生的計算能力.21、(1)(2)證明見解析【解析】(1)根據(jù)雙曲線的定義求得的值得雙曲線方程;(2)確定垂直于軸,設(shè)直線BP的方程為,設(shè),,則,直線方程代入雙曲線方程,由相交求得范圍,由韋達定理,利用N、B、Q三點共線,且NQ斜率存在,由斜率相等得出的關(guān)系,代入韋達定理的結(jié)論可求得的值,從而得直線BP所過定點【小問1詳解】因為,所以,動點M的軌跡是以點、為左、右焦點的雙曲線的左支,則,可得,,所以,點M的軌跡方程為;【小問2詳解】證明:∵,∴直線PQ垂直于x軸,易知,直線BP的斜率存在且不為0,設(shè)直線BP的方程為,設(shè),,則,聯(lián)立,化簡得:,直線與雙曲線左支、右支各有一個交點,需滿足或,∴,,又,又N、B、Q三點共線,且NQ斜率存在,∴,即,∴,∴,∴,化簡得:,∴,∴,即,滿足判別式大于0,即直線BP方程為,所以直線BP過定點22、(1)當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.(2)0.【解析】(1)求得,對參數(shù)分類討論,即可由每種情況下的正負(fù)確定函數(shù)的單調(diào)性;(2)根據(jù)題意求得,利用進行放縮,只需證即,再利用導(dǎo)數(shù)通過證明從而得到恒成立,則問題得解.【小問1詳解】以為,其定義域為,又,故當(dāng)時,,在單調(diào)遞增;當(dāng)時,令,可得,且令,解得,令,解得,故在單調(diào)遞增,在單調(diào)遞減.綜上所述:當(dāng),在單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論