版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省永州市新田一中2026屆數(shù)學高三第一學期期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示的莖葉圖為高三某班名學生的化學考試成績,算法框圖中輸入的,,,,為莖葉圖中的學生成績,則輸出的,分別是()A., B.,C., D.,2.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則()A. B.C. D.3.在區(qū)間上隨機取一個實數(shù),使直線與圓相交的概率為()A. B. C. D.4.已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為()A. B. C. D.15.設,其中a,b是實數(shù),則()A.1 B.2 C. D.6.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.7.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發(fā)現(xiàn)三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據(jù)以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路8.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間9.已知角的終邊經(jīng)過點P(),則sin()=A. B. C. D.10.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.11.點為棱長是2的正方體的內(nèi)切球球面上的動點,點為的中點,若滿足,則動點的軌跡的長度為()A. B. C. D.12.若實數(shù)、滿足,則的最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知在等差數(shù)列中,,,前n項和為,則________.14.執(zhí)行右邊的程序框圖,輸出的的值為.15.定義在上的偶函數(shù)滿足,且,當時,.已知方程在區(qū)間上所有的實數(shù)根之和為.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,則__________,__________.16.過直線上一動點向圓引兩條切線MA,MB,切點為A,B,若,則四邊形MACB的最小面積的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在三棱錐中,,,,點為中點.(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值.18.(12分)在直角坐標系中,曲線的參數(shù)方程是(是參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線的極坐標方程;(2)在曲線上取一點,直線繞原點逆時針旋轉(zhuǎn),交曲線于點,求的最大值.19.(12分)已知函數(shù)的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數(shù)的取值范圍.20.(12分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點.(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.21.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.22.(10分)設函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.2、C【解析】
根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案.【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調(diào)遞增,則有,故選C.【點睛】本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應用,注意函數(shù)奇偶性的應用,屬于基礎(chǔ)題.3、D【解析】
利用直線與圓相交求出實數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數(shù),考查計算能力,屬于基礎(chǔ)題.4、B【解析】
過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.設,將表示成關(guān)于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面平面ABCD,所以平面ABCD,所以.因為底面ABCD是邊長為1的正方形,,所以.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.易證平面平面ABE,所以點H到平面ABE的距離,即為H到EF的距離.不妨設,則,.因為,所以,所以,當時,等號成立.此時EH與ED重合,所以,.故選:B.【點睛】本題考查空間中點到面的距離的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查空間想象能力和運算求解能力,求解時注意輔助線及面面垂直的應用.5、D【解析】
根據(jù)復數(shù)相等,可得,然后根據(jù)復數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復數(shù)模的計算,考驗計算,屬基礎(chǔ)題.6、A【解析】
聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.7、D【解析】
甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內(nèi)容進行分類討論,屬于基礎(chǔ)題型.8、D【解析】
可判斷函數(shù)為奇函數(shù),先討論當且時的導數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點值分別看作對應常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對應自變量范圍,導數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題9、A【解析】
由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項.10、C【解析】
根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.11、C【解析】
設的中點為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動點的軌跡,最后求出動點的軌跡的長度.【詳解】設的中點為,連接,因此有,而,而平面,,因此有平面,所以動點的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標原點的空間直角坐標系:因此有,設平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動點的軌跡的長度為.故選:C【點睛】本題考查了線面垂直的判定定理的應用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學運算能力.12、D【解析】
根據(jù)約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點,由得,平移直線,當該直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、39【解析】
設等差數(shù)列公差為d,首項為,再利用基本量法列式求解公差與首項,進而求得即可.【詳解】設等差數(shù)列公差為d,首項為,根據(jù)題意可得,解得,所以.故答案為:39【點睛】本題考查等差數(shù)列的基本量計算以及前n項和的公式,屬于基礎(chǔ)題.14、【解析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結(jié)束所以答案應填:考點:1、程序框圖;2、定積分.15、24【解析】
根據(jù)函數(shù)為偶函數(shù)且,所以的周期為,的實數(shù)根是函數(shù)和函數(shù)的圖象的交點的橫坐標,在平面直角坐標系中畫出函數(shù)圖象,根據(jù)函數(shù)的對稱性可得所有實數(shù)根的和為,從而可得參數(shù)的值,最后求出函數(shù)的解析式,代入求值即可.【詳解】解:因為為偶函數(shù)且,所以的周期為.因為時,,所以可作出在區(qū)間上的圖象,而方程的實數(shù)根是函數(shù)和函數(shù)的圖象的交點的橫坐標,結(jié)合函數(shù)和函數(shù)在區(qū)間上的簡圖,可知兩個函數(shù)的圖象在區(qū)間上有六個交點.由圖象的對稱性可知,此六個交點的橫坐標之和為,所以,故.因為,所以.故.故答案為:;【點睛】本題考查函數(shù)的奇偶性、周期性、對稱性的應用,函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.16、.【解析】
先求圓的半徑,四邊形的最小面積,轉(zhuǎn)化為的最小值為,求出切線長的最小值,再求的距離也就是圓心到直線的距離,可解得的取值范圍,利用幾何概型即可求得概率.【詳解】由圓的方程得,所以圓心為,半徑為,四邊形的面積,若四邊形的最小面積,所以的最小值為,而,即的最小值,此時最小為圓心到直線的距離,此時,因為,所以,所以的概率為.【點睛】本題考查直線與圓的位置關(guān)系,及與長度有關(guān)的幾何概型,考查了學生分析問題的能力,難度一般.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析.(2)【解析】
(1)通過證明平面,證得,證得,由此證得平面,進而證得平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】(1)因為,所以平面,因為平面,所以.因為,點為中點,所以.因為,所以平面.因為平面,所以平面平面.(2)以點為坐標原點,直線分別為軸,軸,過點與平面垂直的直線為軸,建立空間直角坐標系,則,,,,,,,,,,設平面的一個法向量,則即取,則,,所以,設平面的一個法向量,則即取,則,,所以,設平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)(2)最大值為【解析】
(1)利用消去參數(shù),求得曲線的普通方程,再轉(zhuǎn)化為極坐標方程.(2)設出兩點的坐標,求得的表達式,并利用三角恒等變換進行化簡,再結(jié)合三角函數(shù)最值的求法,求得的最大值.【詳解】(1)由消去得曲線的普通方程為.所以的極坐標方程為,即.(2)不妨設,,,,,則當時,取得最大值,最大值為.【點睛】本小題主要考查參數(shù)方程化為普通方程,普通方程化為極坐標方程,考查極坐標系下線段長度的乘積的最值的求法,考查三角恒等變換,考查三角函數(shù)最值的求法,屬于中檔題.19、(1);(2).【解析】
(1)利用定義法求出函數(shù)在上單調(diào)遞增,由和,求出,求出,運用單調(diào)性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調(diào)遞增,恒成立,設,利用三角恒等變換化簡,結(jié)合恒成立的條件,構(gòu)造新函數(shù),利用單調(diào)性和最值,求出實數(shù)的取值范圍.【詳解】(1)設,,所以函數(shù)在上單調(diào)遞增,又因為和,則,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設,則,令,則,所以在區(qū)間上單調(diào)遞增,所以,根據(jù)條件,只要,所以.【點睛】本題考查利用定義法求函數(shù)的單調(diào)性和利用單調(diào)性求不等式的解集,考查不等式恒成立問題,還運用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉(zhuǎn)化思想和解題能力.20、(1)見解析(2)見解析【解析】
(1)連結(jié)AC交BD于點O,連結(jié)OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【詳解】證明:(1)連結(jié)AC交BD于點O,連結(jié)OE因為四邊形ABCD為平行四邊形∴O為AC中點,又E為PC中點,故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD
;(2)∵△PCD為正三角形,E為PC中點所以PC⊥DE因為平面PCD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【點睛】本題主要考查空間位置關(guān)系的證明,線面平行一般轉(zhuǎn)化為線線平行來證明,直線與直線垂直通常利用線面垂直來進行證明,側(cè)重考查邏輯推理的核心素養(yǎng).21、(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)取的中點,連接,由,,得三點共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西省晉中市壽陽縣2026屆九年級上學期期末考試化學試卷
- 安徽滁州市天長市2025-2026學年九年級上學期2月期末道德與法治試題(含答案)
- 2024年八年級期末質(zhì)量考試物理試題卷
- 2025年婁底幼兒師范高等??茖W校單招職業(yè)技能測試題庫附答案解析
- 2025年歙縣幼兒園教師招教考試備考題庫帶答案解析(必刷)
- 2024年黑河學院馬克思主義基本原理概論期末考試題附答案解析
- 2025年友誼縣招教考試備考題庫含答案解析(奪冠)
- 2025年商南縣招教考試備考題庫含答案解析(奪冠)
- 2025年社旗縣招教考試備考題庫帶答案解析(奪冠)
- 2025年湄洲灣職業(yè)技術(shù)學院單招職業(yè)適應性測試題庫帶答案解析
- 2025年龍井市面向委培生和定向生招聘員額崗位(5人)筆試參考題庫及答案解析
- 交通事故培訓
- 金融投資分析與決策指導手冊(標準版)
- 【初中 地理】2025-2026學年人教版八年級地理下冊知識點匯Z
- 2025年版廉政知識測試題庫(含答案)
- 機械制圖教案
- 新疆干旱的原因
- 九年級 22天1600個中考詞匯背默專項訓練(英語)
- 老年心血管疾病預防與治療
- PICC導管標準維護流程教案(2025-2026學年)
- 護士長采血防淤青課件
評論
0/150
提交評論