版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省蒙城二中2026屆高三數學第一學期期末教學質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(包括邊界),則A.-3,1 B.-3,5 C.-∞,-32.已知,,,則()A. B.C. D.3.三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為()A. B. C. D.4.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個比例為“白銀比例”,該比例在設計和建筑領域有著廣泛的應用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂到塔底的高度與第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項中與該塔的實際高度最接近的是()A.400米 B.480米C.520米 D.600米5.的二項展開式中,的系數是()A.70 B.-70 C.28 D.-286.若復數,,其中是虛數單位,則的最大值為()A. B. C. D.7.如圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.8.“”是“函數(為常數)為冪函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件9.已知命題p:直線a∥b,且b?平面α,則a∥α;命題q:直線l⊥平面α,任意直線m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)10.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.11.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發(fā)現(xiàn)三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路12.已知集合,集合,那么等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為橢圓內一定點,經過引一條弦,使此弦被點平分,則此弦所在的直線方程為________________.14.對于任意的正數,不等式恒成立,則的最大值為_____.15.平面向量,,(R),且與的夾角等于與的夾角,則.16.函數的定義域為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設,函數,其中為自然對數的底數.(1)設函數.①若,試判斷函數與的圖像在區(qū)間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設函數,試判斷函數是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.18.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點.(1)證明:平面;(2)設是直線上的動點,當點到平面距離最大時,求面與面所成二面角的正弦值.19.(12分)在直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.(1)求直線和圓的普通方程;(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.20.(12分)若函數在處有極值,且,則稱為函數的“F點”.(1)設函數().①當時,求函數的極值;②若函數存在“F點”,求k的值;(2)已知函數(a,b,,)存在兩個不相等的“F點”,,且,求a的取值范圍.21.(12分)在直角坐標系中,曲線的參數方程為(為參數,),點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程,并指出其形狀;(2)曲線與曲線交于,兩點,若,求的值.22.(10分)已知動圓Q經過定點,且與定直線相切(其中a為常數,且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內的點(x,y)和定點P(2,-1)設k=y+1x-2,結合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關鍵有兩個:一是根據數形結合的方法求解問題,即把y+1x-22、C【解析】
利用二倍角公式,和同角三角函數的商數關系式,化簡可得,即可求得結果.【詳解】,所以,即.故選:C.【點睛】本題考查三角恒等變換中二倍角公式的應用和弦化切化簡三角函數,難度較易.3、A【解析】分析:設三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內的概率即可得出結論.解析:設三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內的概率為.落在黃色圖形內的圖釘數大約為.故選:A.點睛:應用幾何概型求概率的方法建立相應的幾何概型,將試驗構成的總區(qū)域和所求事件構成的區(qū)域轉化為幾何圖形,并加以度量.(1)一般地,一個連續(xù)變量可建立與長度有關的幾何概型,只需把這個變量放在數軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序實數對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關的幾何概型;(3)若一個隨機事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數組來表示基本事件,利用空間直角坐標系即可建立與體積有關的幾何概型.4、B【解析】
根據題意,畫出幾何關系,結合各線段比例可先求得第一展望臺和第二展望臺的距離,進而由比例即可求得該塔的實際高度.【詳解】設第一展望臺到塔底的高度為米,塔的實際高度為米,幾何關系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點睛】本題考查了對中國文化的理解與簡單應用,屬于基礎題.5、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數是,故選A.考點:二項式定理的應用.6、C【解析】
由復數的幾何意義可得表示復數,對應的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復數的幾何意義可得,復數對應的點為,復數對應的點為,所以,其中,故選C【點睛】本題主要考查復數的幾何意義,由復數的幾何意義,將轉化為兩復數所對應點的距離求值即可,屬于基礎題型.7、D【解析】
由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結合同角三角函數的基本關系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點睛】本題考查了同角三角函數的基本關系,考查了二倍角公式.本題的關鍵是由面積比求出角的正切值.8、A【解析】
根據冪函數定義,求得的值,結合充分條件與必要條件的概念即可判斷.【詳解】∵當函數為冪函數時,,解得或,∴“”是“函數為冪函數”的充分不必要條件.故選:A.【點睛】本題考查了充分必要條件的概念和判斷,冪函數定義的應用,屬于基礎題.9、C【解析】
首先判斷出為假命題、為真命題,然后結合含有簡單邏輯聯(lián)結詞命題的真假性,判斷出正確選項.【詳解】根據線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內,命題為假命題;根據線面垂直的定義,我們易得命題若直線平面,則若直線與平面內的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【點睛】本小題主要考查線面平行與垂直有關命題真假性的判斷,考查含有簡單邏輯聯(lián)結詞的命題的真假性判斷,屬于基礎題.10、A【解析】
由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質,屬于基礎題.11、D【解析】
甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內容進行分類討論,屬于基礎題型.12、A【解析】
求出集合,然后進行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進而可求得直線的點斜式方程,化為一般式即可.【詳解】設弦所在的直線與橢圓相交于、兩點,由于點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【點睛】本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達定理設而不求法來解答,考查計算能力,屬于中等題.14、【解析】
根據均為正數,等價于恒成立,令,轉化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數,不等式恒成立,等價于恒成立,令則,當且僅當即時取得等號,故的最大值為.故答案為:【點睛】此題考查不等式恒成立求參數的取值范圍,關鍵在于合理進行等價變形,此題可以構造二次函數求解,也可利用基本不等式求解.15、2【解析】試題分析:,與的夾角等于與的夾角,所以考點:向量的坐標運算與向量夾角16、【解析】
對數函數的定義域需滿足真數大于0,再由指數型不等式求解出解集即可.【詳解】對函數有意義,即.故答案為:【點睛】本題考查求對數函數的定義域,還考查了指數型不等式求解,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)①函數與的圖象在區(qū)間上有交點;②證明見解析;(2)且;【解析】
(1)①令,結合函數零點的判定定理判斷即可;②設切點橫坐標為,求出切線方程,得到,根據函數的單調性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數的單調區(qū)間,確定的范圍即可.【詳解】解:(1)①當時,函數,令,,則,,故,又函數在區(qū)間上的圖象是不間斷曲線,故函數在區(qū)間上有零點,故函數與的圖象在區(qū)間上有交點;②證明:假設存在,使得直線是曲線的切線,切點橫坐標為,且,則切線在點切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數在和上單調遞增,又函數在時,故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當時,遞減,故當時,,遞增,當時,,遞減,故在處取得極大值,不合題意;時,則在遞減,在,遞增,①當時,,故在遞減,可得當時,,當時,,,易證,令,,令,故,則,故在遞增,則,即時,,故在,內存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時,,遞增,不合題意;③當時,,當,時,,遞減,當時,,遞增,故在處取極小值,符合題意,綜上,實數的范圍是且.【點睛】本題考查了函數的單調性,最值問題,考查導數的應用以及分類討論思想,轉化思想,屬于難題.18、(1)證明見解析(2)【解析】
(1)取中點,連接,根據菱形的性質,結合線面垂直的判定定理和性質進行證明即可;(2)根據面面垂直的判定定理和性質定理,可以確定點到直線的距離即為點到平面的距離,結合垂線段的性質可以確定點到平面的距離最大,最大值為1.以為坐標原點,直線分別為軸建立空間直角坐標系.利用空間向量夾角公式,結合同角的三角函數關系式進行求解即可.【詳解】(1)證明:取中點,連接,因為四邊形為菱形且.所以,因為,所以,又,所以平面,因為平面,所以.同理可證,因為,所以平面.(2)解:由(1)得平面,所以平面平面,平面平面.所以點到直線的距離即為點到平面的距離.過作的垂線段,在所有的垂線段中長度最大的為,此時必過的中點,因為為中點,所以此時,點到平面的距離最大,最大值為1.以為坐標原點,直線分別為軸建立空間直角坐標系.則所以平面的一個法向量為,設平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點睛】本題考查了線面垂直的判定定理和性質的應用,考查了二面角的向量求法,考查了推理論證能力和數學運算能力.19、(1),;(2)【解析】分析:(1)用代入法消參數可得直線的普通方程,由公式可化極坐標方程為直角坐標方程;(2)把直線的參數方程代入曲線的直角坐標方程,其中參數的絕對值表示直線上對應點到的距離,因此有,,直接由韋達定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關系,由此可求得的取值范圍.詳解:(1)直線的參數方程為,普通方程為,將代入圓的極坐標方程中,可得圓的普通方程為,(2)解:直線的參數方程為代入圓的方程為可得:(*),且由題意,,.因為方程(*)有兩個不同的實根,所以,即,又,所以.因為,所以所以.點睛:(1)參數方程化為普通方程,一般用消參數法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標方程與直角坐標方程互化一般利用公式;(3)過的直線的參數方程為(為參數)中參數具有幾何意義:直線上任一點對應參數,則.20、(1)①極小值為1,無極大值.②實數k的值為1.(2)【解析】
(1)①將代入可得,求導討論函數單調性,即得極值;②設是函數的一個“F點”(),即是的零點,那么由導數可知,且,可得,根據可得,設,由的單調性可得,即得.(2)方法一:先求的導數,存在兩個不相等的“F點”,,可以由和韋達定理表示出,的關系,再由,可得的關系式,根據已知解即得.方法二:由函數存在不相等的兩個“F點”和,可知,是關于x的方程組的兩個相異實數根,由得,分兩種情況:是函數一個“F點”,不是函數一個“F點”,進行討論即得.【詳解】解:(1)①當時,(),則有(),令得,列表如下:x10極小值故函數在處取得極小值,極小值為1,無極大值.②設是函數的一個“F點”().(),是函數的零點.,由,得,,由,得,即.設,則,所以函數在上單調增,注意到,所以方程存在唯一實根1,所以,得,根據①知,時,是函數的極小值點,所以1是函數的“F點”.綜上,得實數k的值為1.(2)由(a,b,,),可得().又函數存在不相等的兩個“F點”和,,是關于x的方程()的兩個相異實數根.又,,,即,從而,,即..,,解得.所以,實數a的取值范圍為.(2)(解法2)因為(a,b,,)所以().又因為函數存在不相等的兩個“F點”和,所以,是關于x的方程組的兩個相異實數根.由得,.(2.1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 出師表文言文試題及答案
- 2026黑龍江哈爾濱啟航勞務派遣有限公司派遣到哈爾濱工業(yè)大學全媒體中心招聘1人備考題庫必考題
- 仙女湖區(qū)2026年公開招聘衛(wèi)生專業(yè)技術人員考試備考題庫必考題
- 北京市大興區(qū)中醫(yī)醫(yī)院面向社會招聘臨時輔助用工5人參考題庫附答案
- 吉安市公安局2026年公開招聘警務輔助人員【58人】參考題庫必考題
- 成都印鈔有限公司2026年度工作人員招聘參考題庫必考題
- 招6人!湟源縣公安局2025年面向社會公開招聘警務輔助人員參考題庫必考題
- 浙江國企招聘-2026年紹興嵊州市水務投資發(fā)展集團有限公司公開招聘工作人員8人參考題庫附答案
- 科技日報社招聘事業(yè)單位2人參考題庫必考題
- 貴州國企招聘:2025貴州磷化集團下屬子公司湖北甕福海峪氟硅科技有限公司社會招聘29人參考題庫必考題
- 環(huán)境多因素交互導致慢性病共病的機制研究
- 2026湖南衡陽耒陽市公安局招聘75名警務輔助人員考試參考題庫及答案解析
- 電力工程施工方案及規(guī)范
- 2026年中共佛山市順德區(qū)委組織部佛山市順德區(qū)國有資產監(jiān)督管理局招聘備考題庫及參考答案詳解
- 多重耐藥菌醫(yī)院感染預防與控制技術指南完整版
- 2026年1月浙江省高考(首考)英語試題(含答案詳解)+聽力音頻+聽力材料
- 河南新鄉(xiāng)鶴壁安陽焦作2026年1月高三一模物理試題+答案
- 2026年食品安全快速檢測儀器項目可行性研究報告
- 2025年新版八年級上冊歷史期末復習必背歷史小論文范例
- 2026年時事政治測試題庫附完整答案(網校專用)
- 2026年及未來5年市場數據中國電能計量裝置市場競爭格局及投資戰(zhàn)略規(guī)劃報告
評論
0/150
提交評論