2026屆鶴崗市重點中學高一數(shù)學第一學期期末檢測模擬試題含解析_第1頁
2026屆鶴崗市重點中學高一數(shù)學第一學期期末檢測模擬試題含解析_第2頁
2026屆鶴崗市重點中學高一數(shù)學第一學期期末檢測模擬試題含解析_第3頁
2026屆鶴崗市重點中學高一數(shù)學第一學期期末檢測模擬試題含解析_第4頁
2026屆鶴崗市重點中學高一數(shù)學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆鶴崗市重點中學高一數(shù)學第一學期期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.對于每個實數(shù)x,設取兩個函數(shù)中的較小值.若動直線y=m與函數(shù)的圖象有三個不同的交點,它們的橫坐標分別為,則的取值范圍是()A. B.C. D.2.下列命題正確的是()A.若,則B.若,則C.若,則D.若,則3.如圖,質點在單位圓周上逆時針運動,其初始位置為,角速度為2,則點到軸距離關于時間的函數(shù)圖象大致為()A. B.C. D.4.如圖,在正方體中,異面直線與所成的角為()A.90° B.60°C.45° D.30°5.已知,則等于()A.1 B.2C.3 D.66.若函數(shù)是冪函數(shù),且其圖象過點,則函數(shù)的單調增區(qū)間為A. B.C. D.7.不等式x2≥2x的解集是()A.{x|x≥2} B.{x|x≤2}C.{x|0≤x≤2} D.{x|x≤0或x≥2}8.已知函數(shù),,則的零點所在的區(qū)間是A. B.C. D.9.已知函數(shù)f(x)=是奇函數(shù),若f(2m-1)+f(m-2)≥0,則m的取值范圍為()A. B.C. D.10.總體由編號為01,02,...,19,20的20個個體組成,利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表的第1行第5列和第6列數(shù)字開始由左向右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()7961950784031379510320944316831718696254073892615789810641384975A.20 B.18C.17 D.16二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則滿足的的取值范圍是___________.12.已知在上單調遞增,則的范圍是_____13.已知扇形的圓心角為,其弧長是其半徑的2倍,則__________14.已知為偶函數(shù),當時,,當時,,則不等式的解集為__________15.已知直線:,直線:,若,則__________16.奇函數(shù)f(x)是定義在[-2,2]上的減函數(shù),若f(2a+1)+f(4a-3)>0,則實數(shù)a的取值范圍是_______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知f(x)是定義在R上偶函數(shù),且當x≥0時,(1)用定義法證明f(x)在(0,+∞)上單調遞增;(2)求不等式f(x)>0的解集.18.已知函數(shù)(1)求函數(shù)的最小正周期和在上的值域;(2)若,求的值19.已知向量,,設函數(shù)=+(1)求函數(shù)的最小正周期和單調遞增區(qū)間;(2)當時,求函數(shù)的值域20.已知.(1)化簡;(2)若是第三象限角,且,求的值.21.已知函數(shù)是定義域為R的奇函數(shù).(1)求t的值,并寫出的解析式;(2)判斷在R上的單調性,并用定義證明;(3)若函數(shù)在上的最小值為,求k的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】如圖,作出函數(shù)的圖象,其中,設與動直線的交點的橫坐標為,∵圖像關于對稱∴∵∴∴故選C點睛:本題首先考查新定義問題,首先從新定義理解函數(shù),為此解方程,確定分界點,從而得函數(shù)的具體表達式,畫出函數(shù)圖象,通過圖象確定三個數(shù)中具有對稱關系,,因此只要確定的范圍就能得到的范圍.2、D【解析】由不等式性質依次判斷各個選項即可.【詳解】對于A,若,由可得:,A錯誤;對于B,若,則,此時未必成立,B錯誤;對于C,當時,,C錯誤;對于D,當時,由不等式性質知:,D正確.故選:D.3、A【解析】利用角速度先求出時,的值,然后利用單調性進行判斷即可【詳解】因為,所以由,得,此時,所以排除CD,當時,越來越小,單調遞減,所以排除B,故選:A4、B【解析】連接,可證明,然后可得即為異面直線與所成的角,然后可求出答案.【詳解】連接,因為是正方體,所以和平行且相等所以四邊形是平行四邊形,所以,所以為異面直線與所成的角.因為是等邊三角形,所以故選:B5、A【解析】利用對數(shù)和指數(shù)互化,可得,,再利用即可求解.【詳解】由得:,,所以,故選:A6、B【解析】分別求出m,a的值,求出函數(shù)的單調區(qū)間即可【詳解】解:由題意得:,解得:,故,將代入函數(shù)的解析式得:,解得:,故,令,解得:,故在遞增,故選B【點睛】本題考查了冪函數(shù)的定義以及對數(shù)函數(shù)的性質,是一道基礎題7、D【解析】由x2≥2x解得:x(x-2)≥0,所以x≤0或x≥2.選D.8、C【解析】由題意結合零點存在定理確定的零點所在的區(qū)間即可.【詳解】由題意可知函數(shù)在上單調遞減,且函數(shù)為連續(xù)函數(shù),注意到,,,,結合函數(shù)零點存在定理可得的零點所在的區(qū)間是.本題選擇C選項.【點睛】應用函數(shù)零點存在定理需要注意:一是嚴格把握零點存在性定理的條件;二是連續(xù)函數(shù)在一個區(qū)間的端點處函數(shù)值異號是這個函數(shù)在這個區(qū)間上存在零點的充分條件,而不是必要條件;三是函數(shù)f(x)在(a,b)上單調且f(a)f(b)<0,則f(x)在(a,b)上只有一個零點.9、B【解析】由已知結合f(0)=0求得a=-1,得到函數(shù)f(x)在R上為增函數(shù),利用函數(shù)單調性化f(2m-1)+f(m-2)≥0為f(2m-1)≥f(-m+2),即2m-1≥-m+2,則答案可求【詳解】∵函數(shù)f(x)=的定義域為R,且是奇函數(shù),,即a=-1,∵2x在(-∞,+∞)上為增函數(shù),∴函數(shù)在(-∞,+∞)上為增函數(shù),由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范圍為m≥1故選B【點睛】本題考查函數(shù)單調性與奇偶性的應用,考查數(shù)學轉化思想方法,是中檔題10、D【解析】利用隨機數(shù)表從給定位置開始依次取兩個數(shù)字,根據(jù)與20的大小關系可得第5個個體的編號.【詳解】從隨機數(shù)表的第1行第5列和第6列數(shù)字開始由左向右依次選取兩個數(shù)字,小于或等于20的5個編號分別為:07,03,13,20,16,故第5個個體編號為16.故選:D.【點睛】本題考查隨機數(shù)表抽樣,此類問題理解抽樣規(guī)則是關鍵,本題屬于容易題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】∵在x∈(0,+∞)上是減函數(shù),f(1)=0,∴0<3-x<1,解得2<x<3.12、【解析】令,利用復合函數(shù)的單調性分論討論函數(shù)的單調性,列出關于的不等式組,求解即可.【詳解】令當時,由題意知在上單調遞增且對任意的恒成立,則,無解;當時,由題意知在上單調遞減且對任意的恒成立,則,解得.故答案為:【點睛】本題考查對數(shù)型復合函數(shù)的單調性,同增異減,求解時注意對數(shù)函數(shù)的定義域,屬于基礎題.13、-1【解析】由已知得,所以則,故答案.14、【解析】求出不等式在的解,然后根據(jù)偶函數(shù)的性質可得出不等式在上的解集.【詳解】當時,令,可得,解得,此時;當時,令,解得,此時.所以,不等式在的解為.由于函數(shù)為偶函數(shù),因此,不等式的解集為.故答案為:.【點睛】本題考查分段函數(shù)不等式的求解,同時也涉及了函數(shù)奇偶性的應用,考查運算求解能力,屬于中等題.15、1【解析】根據(jù)兩直線垂直時,系數(shù)間滿足的關系列方程即可求解.【詳解】由題意可得:,解得:故答案為:【點睛】本題考查直線垂直的位置關系,考查理解辨析能力,屬于基礎題.16、[【解析】利用函數(shù)的奇偶性、單調性去掉不等式中的符號“f”,可轉化為具體不等式,注意函數(shù)定義域【詳解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)為奇函數(shù),得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定義在[-2,2]上的減函數(shù),∴解得:1即a∈故答案為:1【點睛】本題考查函數(shù)的奇偶性、單調性的綜合應用,考查轉化思想,解決本題的關鍵是利用性質去掉符號“f”三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)或【解析】(1)先設,然后利用作差法比較與的大小即可判斷,(2)當時,,然后結合分式不等式可求,再設,根據(jù)已知可求,然后再求解不等式【詳解】解:(1)是定義在上偶函數(shù),且當時,,設,則,所以,所以在上單調遞增,(2)當時,,整理得,,解得或(舍,設,則,,整理得,,解得,(舍或,綜上或故不等式的解集或18、(1)見解析;(2)【解析】(1)由三角函數(shù)中的恒等變換應用化簡函數(shù)解析式為f(x)=,進而得到函數(shù)的周期與值域;(2)由(1)知,利用二倍角余弦公式可得所求.【詳解】(1)由已知,,,∴又,則所以的最小正周期為在時的值域為.(2)由(1)知,所以則【點睛】本題考查三角函數(shù)的圖像與性質,考查三角函數(shù)的化簡求值,考查恒等變形能力,屬于中檔題.19、(1);;(2)【解析】(1)根據(jù)向量數(shù)量積的坐標運算及輔助角公式,可得,然后由周期公式去求周期,再結合正弦函數(shù)的單調性去求函數(shù)的單調遞增區(qū)間;(2)由(1)知,由求出,再結合正弦函數(shù)的單調性去求函數(shù)的值域【詳解】(1)依題意得===的最小正周期是:由解得,從而可得函數(shù)的單調遞增區(qū)間是:(2)由,可得,所以,從而可得函數(shù)的值域是:20、(1);(2).【解析】(1)根據(jù)誘導公式化簡即可得答案;(2)根據(jù)誘導公式,結合已知條件得,再根據(jù)同角三角函數(shù)關系求值即可.【詳解】(1).(2)∵,∴,又是第三象限角,∴,故.【點睛】本題考查誘導公式化簡求值,考查運算能力,基礎題.21、(1)或,;(2)R上單調遞增,證明見解析;(3)【解析】(1)是定義域為R的奇函數(shù),利用奇函數(shù)的必要條件,求出的值,進而求出,驗證是否為奇函數(shù);(2)可判斷在上為增函數(shù),用函數(shù)的單調性定義加以證明,取兩個不等的自變量,對應函數(shù)值做差,因式分解,判斷函數(shù)值差的符號,即可證明結論;(3)由,換元令,,由(2)得,,根據(jù)條件轉化為在最小值為-2,對二次函數(shù)配方,求出對稱軸,分類討論求出最小值,即可求解【詳解】解:(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論