版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆北京一五六中學高二數學第一學期期末質量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別是,焦距,過點的直線與橢圓交于兩點,若,且,則橢圓C的方程為()A. B.C. D.2.已知數列滿足:且,則此數列的前20項的和為()A.621 B.622C.1133 D.11343.已知橢圓:與雙曲線:有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則的最大值為()A. B.C. D.4.若直線:與:互相平行,則a的值是()A. B.2C.或2 D.3或5.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點,過F1的直線與雙曲線左、右兩支分別交于點P、Q.若,M為PQ的中點,且,則雙曲線的離心率為()A. B.C. D.6.已知直線和互相平行,則實數的取值為()A或3 B.C. D.1或7.執(zhí)行如圖所示的程序框圖,若輸入的的值為3,則輸出的的值為()A.3 B.6C.9 D.128.已知橢圓與雙曲線有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則當取最大值時的值為()A. B.C. D.9.中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術.如圖所示的圓形剪紙中,正六邊形的所有頂點都在該圓上,若在該圓形剪紙的內部投擲一點,則該點恰好落在正六邊形內部的概率為()A. B.C. D.10.執(zhí)行如圖所示的程序框圖,若輸出的,則輸人的()A. B.或C. D.或11.經過點且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.12.已知正方體的棱長為1,且滿足,則的最小值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.方程的曲線的一條對稱軸是_______,的取值范圍是______.14.設函數,.若對任何,,恒成立,求的取值范圍______.15.已知雙曲線C:的一個焦點坐標為,則其漸近線方程為__________16.設實數x,y滿足,則的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點,圓,點Q在圓上運動,的垂直平分線交于點P.(1)求動點P的軌跡的方程;(2)過點的動直線l交曲線C于A、B兩點,在y軸上是否存在定點T,使以AB為直徑的圓恒過這個點?若存在,求出點T的坐標,若不存在,請說明理由.18.(12分)已知拋物線C:焦點F的橫坐標等于橢圓的離心率.(1)求拋物線C的方程;(2)過(1,0)作直線l交拋物線C于A,B兩點,判斷原點與以線段AB為直徑的圓的位置關系,并說明理由.19.(12分)已知△ABC的內角A,B,C的對邊分別是a,b,c,且.(1)求角C的大?。唬?)若,求△ABC面積的最大值.20.(12分)某消費者協(xié)會在3月15號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務活動,著力提升消費者維權意識,組織方從參加活動的群眾中隨機抽取120名群眾,按年齡將這120名群眾分成5組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.(1)求圖中m的值;(2)估算這120名群眾的年齡的中位數(結果精確到0.1);(3)已知第1組群眾中男性有2人,組織方要從第1組中隨機抽取2名群眾組成維權志愿者服務隊,求恰有一名女性的概率.21.(12分)已知數列的前項和滿足(1)證明:數列為等比數列;(2)若數列為等差數列,且,,求數列的前項和22.(10分)在平面直角坐標系xOy中,已知橢圓E:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為.點P是橢圓上的一動點,且P在第一象限.記的面積為S,當時,.(1)求橢圓E的標準方程;(2)如圖,PF1,PF2的延長線分別交橢圓于點M,N,記和的面積分別為S1和S2.(i)求證:存在常數λ,使得成立;(ii)求S2-S1的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】畫出圖形,利用已知條件,推出,延長交橢圓于點,得到直角和直角,設,則,根據橢圓的定義轉化求解,即可求得橢圓的方程.【詳解】如圖所示,,則,延長交橢圓于點,可得直角和直角,設,則,根據橢圓的定義,可得,在直角中,,解得,又在中,,代入可得,所以,所以橢圓的方程為.故選:A.2、C【解析】這個數列的奇數項是公差為2的等差數列,偶數項是公比為2的等比數列,只要分開來計算即可.【詳解】由于,所以當n為奇數時,是等差數列,即:共10項,和為;,共10項,其和為;∴該數列前20項的和;故選:C.3、B【解析】不妨設點為第一象限的交點,結合橢圓與雙曲線的定義得到,進而結合余弦定理得到,即,令然后結合三角函數即可求出結果.【詳解】不妨設點為第一象限的交點,則由橢圓的定義可得,由雙曲線的定義可得,所以,因此,即,所以,即,令因此,其中,所以當時,有最大值,最大值為,故選:B.【點睛】一、橢圓的離心率是橢圓最重要的幾何性質,求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據一個條件得到關于a,b,c的齊次式,結合b2=a2-c2轉化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉化為關于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)二、雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據一個條件得到關于a,b,c的齊次式,結合b2=c2-a2轉化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉化為關于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)4、A【解析】根據直線:與:互相平行,由求解.【詳解】因為直線:與:互相平行,所以,即,解得或,當時,直線:,:,互相平行;當時,直線:,:,重合;所以,故選:A5、D【解析】由題干條件得到,設出,利用雙曲線定義表達出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關系,求出離心率.【詳解】因為M為PQ的中點,且,所以△為等腰三角形,即,因為,設,則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D6、B【解析】利用兩直線平行的等價條件求得實數m的值.【詳解】∵兩條直線x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故選B【點睛】已知兩直線的一般方程判定兩直線平行或垂直時,記住以下結論,可避免討論:已知,,則,7、A【解析】模擬執(zhí)行程序框圖,根據輸入數據,即可求得輸出數據.【詳解】當時,不滿足,故,即輸出的的值為.故選:.8、D【解析】由橢圓的定義及雙曲線的定義結合余弦定理可得,,的關系,由此可得,再利用重要不等式求最值,并求此時的的值.【詳解】設為第一象限的交點,、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當且僅當,即,時等號成立,此時故選:D9、D【解析】設圓的半徑,求出圓的面積與正六邊形的面積,再根據幾何概型的概率公式計算可得;【詳解】解:設圓的半徑,則,則,所以,所以在該圓形剪紙的內部投擲一點,則該點恰好落在正六邊形內部的概率;故選:D10、A【解析】根據題意可知該程序框圖顯示的算法函數為,分和兩種情況討論即可得解.【詳解】解:該程序框圖顯示得算法函數為,由,當時,,方程無解;當時,,解得,綜上,若輸出的,則輸入的.故選:A.11、C【解析】共漸近線的雙曲線方程,設,把點代入方程解得參數即可.【詳解】設,把點代入方程解得參數,所以化簡得方程故選:C.12、C【解析】由空間向量共面定理可得點四點共面,從而將求的最小值轉化為求點到平面的距離,再根據等體積法計算.【詳解】因為,由空間向量的共面定理可知,點四點共面,即點在平面上,所以的最小值為點到平面的距離,由正方體棱長為,可得是邊長為的等邊三角形,則,,由等體積法得,,所以,所以的最小值為.故選:C【點睛】共面定理的應用:設是不共面的四點,則對空間任意一點,都存在唯一的有序實數組使得,說明:若,則四點共面.二、填空題:本題共4小題,每小題5分,共20分。13、①.x軸或直線②.【解析】根據給定條件分析方程的性質即可求得對稱軸及x的取值范圍作答.【詳解】方程中,因,則曲線關于x軸對稱,又,解得,此時曲線與都關于直線對稱,曲線的對稱軸是x軸或直線,的取值范圍是.故答案為:x軸或直線;14、【解析】先把原不等式轉化為恒成立,構造函數,利用恒成立,求出的取值范圍.【詳解】因為對任何,,所以對任何,,所以在上為減函數.,,所以恒成立,即對恒成立,所以,所以.即的取值范圍是.故答案為:.【點睛】恒(能)成立問題求參數的取值范圍:①參變分離,轉化為不含參數的最值問題;②不能參變分離,直接對參數討論,研究的單調性及最值;③特別地,個別情況下恒成立,可轉換為(二者在同一處取得最值).15、【解析】根據雙曲線的定義由焦點坐標求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因為雙曲線C:的一個焦點坐標為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:16、5【解析】畫出可行域,利用目標函數的幾何意義即可求解【詳解】畫出可行域和目標函數如圖所示:根據平移知,當目標函數經過點時,有最小值為5.故答案為:5.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,T(0,1)﹒【解析】(1)根據橢圓的定義,結合即可求P的軌跡方程;(2)假設存在T(0,t),設AB方程為,聯(lián)立直線方程和橢圓方程,代入=0即可求出定點T.【小問1詳解】由題可知,,則,由橢圓定義知P的軌跡是以F1、為焦點,且長軸長為的橢圓,∴,∴,∴P的軌跡方程為C:;【小問2詳解】假設存在T(0,t)滿足題意,易得AB的斜率一定存在,否則不會存在T滿足題意,設直線AB的方程為,聯(lián)立,化為,易知恒成立,∴(*)由題可知,將(*)代入可得:即∴,解,∴在y軸上存在定點T(0,1),使以AB為直徑的圓恒過這個點T.18、(1);(2)原點在以線段AB為直徑的圓上,詳見解析.【解析】(1)利用橢圓方程可得其離心率,進而可求拋物線的焦點,即求;(2)設直線l的方程為,聯(lián)立拋物線方程,利用韋達定理法可得,即得.【小問1詳解】由橢圓,可得,故,∴拋物線C的方程為.【小問2詳解】由題可設直線l的方程為,由,得,設,則,又,故,∴,∴,即,故原點在以線段AB為直徑的圓上.19、(1)(2)【解析】(1)對,利用正弦定理和誘導公式整理化簡得到,即可求出;(2)先由正弦定理求出c,再由余弦定理和基本不等式求出ab的最大值為1,代入面積公式求面積.【小問1詳解】對于.由正弦定理知:即.所以.所以.所以因為,,所以.所以.因為,所以.【小問2詳解】因為,由正弦定理知:.由余弦定理知:,所以.當且僅當時,等號成立,所以ab的最大值為1.所以,即面積的最大值為.20、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有頻率和為1求出;(2)求出概率對應的值即為中位數;(3)求出第一組中總人數,得女性人數,然后求得恰有一名女性的方法數和總的方法數后可得概率【小問1詳解】解:因為頻率分布直方圖的小矩形面積和為1,所以,解得,【小問2詳解】解:前2組頻率和為,前3組頻率和為,所以中位數在第3組,設中位數為,則,;【小問3詳解】解:第一組總人數為,男性人2人,則女性有4人,不妨記兩名男性為,四名女性為,則隨機抽取2名群眾的可能為,,,共15種方案,其中恰有一名女性的方法數,共8種,所以第1組中隨機抽取2名群眾組成維權志愿者服務隊,求恰有一名女性的概率為21、(1)證明見解析(2)【解析】(1)由與的關系,利用等比數列的定義證明即可;(2)由(1)求出,再利用裂項相消法求解即可【小問1詳解】當時,,,當時,,,,數列是以為首項、以為公比的等比數列【小問2詳解】由(1)得,,即,,設等差數列的公差為,則,,,,,22、(1)(2)(i)存在常數,使得成立;(ii)的最大值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46961-2025專利密集型產品評價方法
- 2025江蘇徐州市泉山國有資產投資經營有限公司投后管理崗招聘考試(第二輪)考試備考試題及答案解析
- 2026福建泉州幼兒師范高等??茖W校招聘15人考試備考題庫及答案解析
- exo介紹英語教學課件
- 2026山東淄博市淄川區(qū)事業(yè)單位招聘教師20人考試參考試題及答案解析
- 2026湖南常德市西洞庭食品工業(yè)園投資開發(fā)有限公司招聘人員筆試備考試題及答案解析
- 德陽經濟技術開發(fā)區(qū)第四幼兒園2026年春期面向社會 公開招聘“兩自一包”非在編教職工招聘考試參考試題及答案解析
- 2026河北興冀人才資源開發(fā)有限公司外包人員招聘49人考試備考試題及答案解析
- 2026重慶智匯人才開發(fā)有限公司永川分公司招聘2人考試備考題庫及答案解析
- 2025-2026廣東中山南區(qū)街道招聘公辦幼兒園臨聘教職工7人考試參考試題及答案解析
- 2026年國有企業(yè)金華市軌道交通控股集團招聘備考題庫有答案詳解
- 2025年電子工程師年度工作總結
- 2026年吉林司法警官職業(yè)學院單招職業(yè)技能筆試備考題庫帶答案解析
- 健康中國2030規(guī)劃綱要考試題庫含答案全套
- 產房與兒科交接登記表
- 韓國語topik單詞-初級+中級
- 克林頓1993年就職演講+(中英文)
- 四川省房屋建筑工程和市政基礎設施工程竣工驗收報告
- 商業(yè)倫理與會計職業(yè)道德(第四版)第五章企業(yè)對外經營道德規(guī)范
- DB13 5161-2020 鍋爐大氣污染物排放標準
- 安全隱患排查工作檢查表
評論
0/150
提交評論