2026屆甘肅省白銀市育正學(xué)校數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第1頁(yè)
2026屆甘肅省白銀市育正學(xué)校數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第2頁(yè)
2026屆甘肅省白銀市育正學(xué)校數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第3頁(yè)
2026屆甘肅省白銀市育正學(xué)校數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第4頁(yè)
2026屆甘肅省白銀市育正學(xué)校數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆甘肅省白銀市育正學(xué)校數(shù)學(xué)高二上期末經(jīng)典模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知圓C的方程為,點(diǎn)P在圓C上,O是坐標(biāo)原點(diǎn),則的最小值為()A.3 B.C. D.2.設(shè)等差數(shù)列,的前n項(xiàng)和分別是,,若,則()A. B.C. D.3.已知等差數(shù)列的公差,記該數(shù)列的前項(xiàng)和為,則的最大值為()A.66 B.72C.132 D.1984.若數(shù)列滿足,,則數(shù)列的通項(xiàng)公式為()A. B.C. D.5.已知橢圓的離心率為,左、右焦點(diǎn)分別為、,過(guò)作軸的平行線交橢圓于、兩點(diǎn),為坐標(biāo)原點(diǎn),雙曲線的虛軸長(zhǎng)為,且以、為頂點(diǎn),以直線、為漸近線,則橢圓的短軸長(zhǎng)為()A. B.C. D.6.如圖在平行六面體中,與的交點(diǎn)記為.設(shè),,,則下列向量中與相等的向量是()A. B.C. D.7.?dāng)?shù)列是公差不為零的等差數(shù)列,為其前n項(xiàng)和.若對(duì)任意的,都有,則的值不可能是()A. B.2C. D.38.如圖,過(guò)拋物線的焦點(diǎn)的直線與拋物線交于兩點(diǎn),與其準(zhǔn)線交于點(diǎn)(點(diǎn)位于之間)且于點(diǎn)且,則等于()A. B.C. D.9.已知,向量,,若,則x的值為()A.-1 B.1C.-2 D.210.設(shè)實(shí)數(shù)x,y滿足,則目標(biāo)函數(shù)的最大值是()A. B.C.16 D.3211.已知向量,.若,則()A. B.C. D.12.已知橢圓:與雙曲線:有相同的焦點(diǎn)、,橢圓的離心率為,雙曲線的離心率為,點(diǎn)P為橢圓與雙曲線的交點(diǎn),且,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知對(duì)任意正實(shí)數(shù)m,n,p,q,有如下結(jié)論成立:若,則有成立,現(xiàn)已知橢圓上存在一點(diǎn)P,,為其焦點(diǎn),在中,,,則橢圓的離心率為_(kāi)_____14.設(shè)函數(shù),則___________.15.在空間直角坐標(biāo)系中,已知向量,則的值為_(kāi)_________.16.已知隨機(jī)變量X服從正態(tài)分布,若,則______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓過(guò)點(diǎn),離心率為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)橢圓的上頂點(diǎn)作直線l交拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn)①求證:;②設(shè)OA,OB分別與橢圓相交于C,D兩點(diǎn),過(guò)點(diǎn)O作直線CD的垂線OH,垂足為H,證明:為定值18.(12分)等差數(shù)列的前項(xiàng)和為,數(shù)列是等比數(shù)列,滿足,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)令,設(shè)數(shù)列的前項(xiàng)和為,求.19.(12分)已知函數(shù)的圖象在處的切線方程為.(1)求的解析式;(2)若關(guān)于的方程在上有解,求的取值范圍.20.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若,證明:21.(12分)從橢圓上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn),A是橢圓C與x軸正半軸的交點(diǎn),直線AP的斜率為,若橢圓長(zhǎng)軸長(zhǎng)為8(1)求橢圓C的方程;(2)點(diǎn)Q為橢圓上任意一點(diǎn),求面積的最大值22.(10分)已知函數(shù)(…是自然對(duì)數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點(diǎn)的個(gè)數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】化簡(jiǎn)判斷圓心和半徑,利用圓的性質(zhì)判斷連接線段OC,交圓于點(diǎn)P時(shí)最小,再計(jì)算求值即得結(jié)果.【詳解】化簡(jiǎn)得圓C的標(biāo)準(zhǔn)方程為,故圓心是,半徑,則連接線段OC,交圓于點(diǎn)P時(shí)最小,因?yàn)樵c(diǎn)到圓心的距離,故此時(shí).故選:B.2、B【解析】利用求解.【詳解】解:因?yàn)榈炔顢?shù)列,的前n項(xiàng)和分別是,所以.故選:B3、A【解析】根據(jù)等差數(shù)列的公差,求得其通項(xiàng)公式求解.【詳解】因?yàn)榈炔顢?shù)列的公差,所以,則,所以,由,得,所以或12時(shí),該數(shù)列的前項(xiàng)和取得最大值,最大值為,故選:A4、B【解析】根據(jù)等差數(shù)列的定義和通項(xiàng)公式直接得出結(jié)果.【詳解】因?yàn)?,所以?shù)列是等差數(shù)列,公差為1,所以.故選:B5、C【解析】不妨取點(diǎn)在第一象限,根據(jù)橢圓與雙曲線的幾何性質(zhì),以及它們之間的聯(lián)系,可得點(diǎn)的坐標(biāo),再將其代入橢圓的方程中,解之即可【詳解】解:由題意知,在橢圓中,有,在雙曲線中,有,,即,雙曲線的漸近線方程為,不妨取點(diǎn)在第一象限,則的坐標(biāo)為,即,將其代入橢圓的方程中,有,,解得,橢圓的短軸長(zhǎng)為故選:6、B【解析】利用空間向量的加法和減法法則可得出關(guān)于、、的表達(dá)式.【詳解】故選:B.7、A【解析】由已知建立不等式組,可求得,再對(duì)各選項(xiàng)逐一驗(yàn)證可得選項(xiàng).【詳解】解:因?yàn)閿?shù)列是公差不為零的等差數(shù)列,為其前n項(xiàng)和.對(duì)任意的,都有,所以,即,解得,則當(dāng)時(shí),,不成立;當(dāng)時(shí),,成立;當(dāng)時(shí),,成立;當(dāng)時(shí),,成立;所以的值不可能是,故選:A.8、B【解析】由題可得,然后結(jié)合條件可得,即求.【詳解】設(shè)于點(diǎn),準(zhǔn)線交軸于點(diǎn)G,則,又,∴,又于點(diǎn)且,∴BE∥AD,∴,即,∴,∴等于.故選:B.9、D【解析】根據(jù)給定條件利用空間向量垂直的坐標(biāo)表示計(jì)算作答.【詳解】因向量,,,則,解得,所以x的值為2.故選:D10、C【解析】求的最大值即求的最大值,根據(jù)約束條件畫出可行域,將目標(biāo)函數(shù)看成直線,直線經(jīng)過(guò)可行域內(nèi)的點(diǎn),將目標(biāo)與直線的截距建立聯(lián)系,然后得到何時(shí)目標(biāo)值取得要求的最值,進(jìn)而求得的最大值,最后求出的最大值.【詳解】要求的最大值即求的最大值.根據(jù)實(shí)數(shù),滿足的條件作出可行域,如圖.將目標(biāo)函數(shù)化為.則表示直線在軸上的截距的相反數(shù).要求的最大值,即求直線在軸上的截距最小值.如圖當(dāng)直線過(guò)點(diǎn)時(shí),在軸上的截距最小值.由,解得所以的最大值為,則的最大值為16.故選:C.11、A【解析】根據(jù)給定條件利用空間向量平行的坐標(biāo)表示直接計(jì)算作答.【詳解】向量,,因,則,解得,所以,B,D都不正確;,C不正確,A正確.故選:A12、B【解析】不妨設(shè)點(diǎn)為第一象限的交點(diǎn),結(jié)合橢圓與雙曲線的定義得到,進(jìn)而結(jié)合余弦定理得到,即,令然后結(jié)合三角函數(shù)即可求出結(jié)果.【詳解】不妨設(shè)點(diǎn)為第一象限的交點(diǎn),則由橢圓的定義可得,由雙曲線的定義可得,所以,因此,即,所以,即,令因此,其中,所以當(dāng)時(shí),有最大值,最大值為,故選:B.【點(diǎn)睛】一、橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=a2-c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)二、雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=c2-a2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)正弦定理,結(jié)合題意,列出方程,代入數(shù)據(jù),化簡(jiǎn)即可得答案.詳解】由題意得:,所以,所以,解得.故答案為:14、【解析】由的導(dǎo)數(shù)為,將代入,即可求出結(jié)果.【詳解】因?yàn)?,所以,所?故答案為:.15、【解析】由題知,進(jìn)而根據(jù)向量數(shù)量積運(yùn)算的坐標(biāo)表示求解即可.【詳解】解:因?yàn)橄蛄?,所以,所以故答案為?6、##25【解析】根據(jù)正態(tài)分布曲線的對(duì)稱性即可求得結(jié)果.【詳解】,,又,,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)①證明見(jiàn)解析;②證明見(jiàn)解析【解析】(1)根據(jù)離心率及過(guò)點(diǎn)求出求解即可;(2)①設(shè)直線l的方程為,利用向量的數(shù)量積計(jì)算證明即可;②設(shè)直線CD方程為,利用求出,再由點(diǎn)O到直線CD的距離即可求證.【小問(wèn)1詳解】因?yàn)?,所以,又因?yàn)椋獾?,,所以橢圓的方程為;【小問(wèn)2詳解】①證明:設(shè),,依題意,直線l斜率存在,設(shè)直線l的方程為,聯(lián)立方程,消去y得,所以,又因?yàn)?,所以,因此,②證明:設(shè),,設(shè)直線CD方程為,因?yàn)?,所以,則,聯(lián)立,得當(dāng)時(shí),,則所以,即滿足則,即為定值18、(1),(2)【解析】(1)根據(jù)條件列關(guān)于公差與公比的方程組,解方程組可得再根據(jù)等差數(shù)列與等比數(shù)列通項(xiàng)公式得結(jié)果(2)根據(jù)錯(cuò)誤相減法求數(shù)列的前項(xiàng)和為,注意作差時(shí)項(xiàng)符號(hào)的變化以及求和時(shí)項(xiàng)數(shù)的確定試題解析:(1)設(shè)數(shù)列的公差為,數(shù)列的公比為,則由得解得所以,.(2)由(1)可知,∴①②①—②得:,∴.點(diǎn)睛:用錯(cuò)位相減法求和應(yīng)注意的問(wèn)題(1)要善于識(shí)別題目類型,特別是等比數(shù)列公比為負(fù)數(shù)的情形;(2)在寫出“”與“”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式;(3)在應(yīng)用錯(cuò)位相減法求和時(shí),若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況求解.19、(1)(2)【解析】(1)求,由條件可得,得出關(guān)于的方程組,求解可得;(2)令,注意,所以在具有單調(diào)性時(shí),則方程無(wú)解,求,對(duì)分類討論,求出單調(diào)區(qū)間,結(jié)合函數(shù)值的變化趨勢(shì),即可求得結(jié)論.【詳解】解:(1),因?yàn)?,所以,解得,,所?(2)令,則.令,則在上單調(diào)遞增.當(dāng),即時(shí),,所以單調(diào)遞增,又,所以;當(dāng),即時(shí),則存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又,則.當(dāng)時(shí),,所以在上有解.綜上,的取值范圍為.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義求參數(shù),考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)區(qū)間、函數(shù)零點(diǎn)的問(wèn)題,考查分類討論思想,屬于較難題.20、(1)當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;(2)見(jiàn)詳解【解析】(1)對(duì)函數(shù)進(jìn)行求導(dǎo),然后根據(jù)參數(shù)進(jìn)行分類討論;(2)構(gòu)造函數(shù),求函數(shù)的最小值即可證出.【詳解】(1)的定義域?yàn)椋?當(dāng)時(shí),在上恒成立,所以在上單調(diào)遞增;當(dāng)時(shí),時(shí),;時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)當(dāng)時(shí),.令,,則.,令,.恒成立,所以在上單調(diào)遞增.因?yàn)?,,所以存在唯一的,使得,?①當(dāng)時(shí),,即,所以在上單調(diào)遞減;當(dāng)時(shí),,即,所以在上單調(diào)遞增.所以,,②方法一:把①代入②得,.設(shè),.則恒成立,所以在上單調(diào)遞減,所以.因?yàn)?,所以,即,所以,所以時(shí),.方法二:設(shè),.則,所以在上單調(diào)遞增,所以,所以.因?yàn)?,所以,所以,所以時(shí),.【點(diǎn)睛】不等式證明問(wèn)題是近年高考命題的熱點(diǎn),利用導(dǎo)數(shù)證明不等式的方法主要有兩個(gè):(1)不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)最值即可;(2)觀察不等式的特點(diǎn),結(jié)合已解答問(wèn)題把要證的不等式變形,并運(yùn)用已證結(jié)論先行放縮,再化簡(jiǎn)或者進(jìn)一步利用導(dǎo)數(shù)證明.21、(1)(2)18【解析】(1)易得,,進(jìn)而有,再結(jié)合已知即可求解;(2)由(1)易得直線AP的方程為,,設(shè)與直線AP平行的直線方程為,由題意,當(dāng)該直線與橢圓相切時(shí),記與AP距離比較遠(yuǎn)的直線與橢圓的切點(diǎn)為Q,此時(shí)的面積取得最大值,將代入橢圓方程,聯(lián)立即可得與AP距離比較遠(yuǎn)的切線方程,從而即可求解.【小問(wèn)1詳解】解:由題意,將代入橢圓方程,得,又∵,∴,化簡(jiǎn)得,解得,又,,所以,∴,∴橢圓的方程為;【小問(wèn)2詳解】解:由(1)知,直線AP的方程為,即,設(shè)與直線AP平行的直線方程為,由題意,當(dāng)該直線與橢圓相切時(shí),記與AP距離比較遠(yuǎn)的直線與橢圓的切點(diǎn)為Q,此時(shí)的面積取得最大值,將代入橢圓方程,化簡(jiǎn)可得,由,即,解得,所以與AP距離比較遠(yuǎn)的切線方程,因?yàn)榕c之間的距離,又,所以的面積的最大值為22、(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時(shí)函數(shù)沒(méi)有零點(diǎn);或時(shí)函數(shù)有且只有一個(gè)零點(diǎn);時(shí),函數(shù)有兩個(gè)零點(diǎn).【解析】(1)先對(duì)函數(shù)求導(dǎo),然后分和兩種情況判斷導(dǎo)函數(shù)正負(fù),求其單調(diào)區(qū)間;(2)由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,從而可得答案【詳解】(1)因?yàn)椋?,?dāng)時(shí),恒成立,所以的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;當(dāng)時(shí),令,得;

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論