2026屆山東省聊城市于集鎮(zhèn)中學(xué)高一上數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
2026屆山東省聊城市于集鎮(zhèn)中學(xué)高一上數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
2026屆山東省聊城市于集鎮(zhèn)中學(xué)高一上數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
2026屆山東省聊城市于集鎮(zhèn)中學(xué)高一上數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
2026屆山東省聊城市于集鎮(zhèn)中學(xué)高一上數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆山東省聊城市于集鎮(zhèn)中學(xué)高一上數(shù)學(xué)期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),若方程有8個相異實根,則實數(shù)的取值范圍A. B.C. D.2.已知冪函數(shù)f(x)=xa的圖象經(jīng)過點(2,),則函數(shù)f(x)為()A.奇函數(shù)且在上單調(diào)遞增 B.偶函數(shù)且在上單調(diào)遞減C.非奇非偶函數(shù)且在上單調(diào)遞增 D.非奇非偶函數(shù)且在上單調(diào)遞減3.方程的解所在的區(qū)間為()A. B.C. D.4.已知向量,其中,則的最小值為()A.1 B.2C. D.35.如圖,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,動點P從點A出發(fā),由A→D→C→B沿邊運動,點P在AB上的射影為Q.設(shè)點P運動的路程為x,△APQ的面積為y,則y=f(x)的圖象大致是()A. B.C. D.6.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.沿軸向左平移個單位 B.沿軸向右平移個單位C.沿軸向左平移個單位 D.沿軸向右平移個單位7.函數(shù)在區(qū)間上的最大值為2,則實數(shù)的值為A.1或 B.C. D.1或8.在同一直角坐標(biāo)系中,函數(shù)和(且)的圖像可能是()A. B.C. D.9.已知函數(shù)f(x)=ax2﹣x﹣8(a>0)在[5,20]上單調(diào)遞增,則實數(shù)a的取值范圍是()A.[,+∞) B.[5,+∞)C.(﹣∞,20] D.[5,20]10.青少年視力是社會普遍關(guān)注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),小數(shù)記錄法的數(shù)據(jù)V和五分記錄法的數(shù)據(jù)L滿足,已知某同學(xué)視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)約為()(注:)A.0.6 B.0.8C.1.2 D.1.5二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)的最大值為3,最小值為1,則函數(shù)的值域為_________.12.函數(shù)的最大值是,則實數(shù)的取值范圍是___________13.已知函數(shù),的圖像在區(qū)間上恰有三個最低點,則的取值范圍為________14.如圖所示,將等腰直角沿斜邊上的高折成一個二面角,使得.那么這個二面角大小是_______15.命題“,”的否定是___________.16.用表示函數(shù)在閉區(qū)間上的最大值.若正數(shù)滿足,則的最大值為__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知(其中a為常數(shù),且)是偶函數(shù).(1)求實數(shù)m的值;(2)證明方程有且僅有一個實數(shù)根,若這個唯一的實數(shù)根為,試比較與的大小.18.(1)已知,求的最小值;(2)求函數(shù)的定義域19.已知函數(shù)的圖象過點與點.(1)求,的值;(2)若,且,滿足條件的的值.20.已知函數(shù)常數(shù)證明在上是減函數(shù),在上是增函數(shù);當(dāng)時,求的單調(diào)區(qū)間;對于中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)a的值21.已知函數(shù)f(x)=Asin(ωx+)

(x∈R,A>0,ω>0,||<)的部分圖象如圖所示,(Ⅰ)試確定f(x)的解析式;(Ⅱ)若=,求cos(-α)的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】畫出函數(shù)的圖象如下圖所示.由題意知,當(dāng)時,;當(dāng)時,設(shè),則原方程化為,∵方程有8個相異實根,∴關(guān)于的方程在上有兩個不等實根令,則,解得∴實數(shù)的取值范圍為.選D點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對于一些比較復(fù)雜的函數(shù)的零點問題常用此方法求解.本題中在結(jié)合函數(shù)圖象分析得基礎(chǔ)上還用到了方程根的分布的有關(guān)知識2、C【解析】根據(jù)已知求出a=,從而函數(shù)f(x)=,由此得到函數(shù)f(x)是非奇非偶函數(shù)且在(0,+∞)上單調(diào)遞增【詳解】∵冪函數(shù)f(x)=xa的圖象經(jīng)過點(2,),∴2a=,解得a=,∴函數(shù)f(x)=,∴函數(shù)f(x)是非奇非偶函數(shù)且在(0,+∞)上單調(diào)遞增故選C【點睛】本題考查命題真假的判斷,考查冪函數(shù)的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題3、C【解析】將方程轉(zhuǎn)化為函數(shù)的零點問題,根據(jù)函數(shù)單調(diào)性判斷零點所處區(qū)間即可.【詳解】函數(shù)在上單增,由,知,函數(shù)的根處在里,故選:C4、A【解析】利用向量坐標(biāo)求模得方法,用表示,然后利用三角函數(shù)分析最小值【詳解】因為,所以,因為,所以,故的最小值為.故選A【點睛】本題將三角函數(shù)與向量綜合考察,利用三角函數(shù)得有界性,求模長得最值5、D【解析】結(jié)合P點的運動軌跡以及二次函數(shù),三角形的面積公式判斷即可【詳解】解:P點在AD上時,△APQ是等腰直角三角形,此時f(x)=?x?x=x2,(0<x<2)是二次函數(shù),排除A,B,P在DC上時,PQ不變,AQ增加,是遞增的一次函數(shù),排除C,故選D【點睛】本題考查了數(shù)形結(jié)合思想,考查二次函數(shù)以及三角形的面積問題,是一道基礎(chǔ)題6、C【解析】利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論【詳解】,將函數(shù)的圖象沿軸向左平移個單位,即可得到函數(shù)的圖象,故選:C【點睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題7、A【解析】化簡可得,再根據(jù)二次函數(shù)的對稱軸與區(qū)間的位置關(guān)系,結(jié)合正弦函數(shù)的值域分情況討論即可【詳解】因,令,故,當(dāng)時,在單調(diào)遞減所以,此時,符合要求;當(dāng)時,在單調(diào)遞增,在單調(diào)遞減故,解得舍去當(dāng)時,在單調(diào)遞增所以,解得,符合要求;綜上可知或故選:A.8、B【解析】利用函數(shù)的奇偶性及對數(shù)函數(shù)的圖象的性質(zhì)可得.【詳解】由函數(shù),可知函數(shù)為偶函數(shù),函數(shù)圖象關(guān)于軸對稱,可排除選項AC,又的圖象過點,可排除選項D.故選:B.9、A【解析】函數(shù)f(x)=ax2﹣x﹣8(a>0)的開口向上,對稱軸方程為,函數(shù)在[5,20]上單調(diào)遞增,則區(qū)間在對稱軸的右側(cè),從而可得答案.【詳解】函數(shù)f(x)=ax2﹣x﹣8(a>0)的開口向上,對稱軸方程為。函數(shù)在[5,20]上單調(diào)遞增,則區(qū)間[5,20]在對稱軸的右側(cè).則解得:.故選:A.【點睛】本題考查二次函數(shù)的單調(diào)性,二次函數(shù)的單調(diào)性與開口方向和對稱軸有關(guān),屬于基礎(chǔ)題.10、B【解析】當(dāng)時,即可得到答案.【詳解】由題意可得當(dāng)時故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)三角函數(shù)性質(zhì),列方程求出,得到,進而得到,利用換元法,即可求出的值域【詳解】根據(jù)三角函數(shù)性質(zhì),的最大值為,最小值為,解得,則函數(shù),則函數(shù),,令,則,令,由得,,所以,的值域為故答案為:【點睛】關(guān)鍵點睛:解題關(guān)鍵在于求出后,利用換元法得出,,進而求出的范圍,即可求出所求函數(shù)的值域,難度屬于中檔題12、[-1,0]【解析】函數(shù),當(dāng)時,函數(shù)有最大值,又因為,所以,故實數(shù)的取值范圍是13、【解析】直接利用正弦型函數(shù)的性質(zhì)的應(yīng)用和函數(shù)的單調(diào)遞區(qū)間的應(yīng)用求出結(jié)果【詳解】解:,,根據(jù)正弦型函數(shù)圖象的特點知,軸左側(cè)有1個或2個最低點①若函數(shù)圖象在軸左側(cè)僅有1個最低點,則,解得,,,此時在軸左側(cè)至少有2個最低點函數(shù)圖象在軸左側(cè)僅有1個最低點不符合題意;②若函數(shù)圖象在軸左側(cè)有2個最低點,則,解得,又,則,故,時,在,恰有3個最低點綜上所述,故答案:14、【解析】首先利用余弦定理求得的長度,然后結(jié)合三角形的特征確定這個二面角大小即可.【詳解】由已知可得為所求二面角的平面角,設(shè)等腰直角的直角邊長度為,則,由余弦定理可得:,則在中,,即所求二面角大小是.故答案為:15、“,”【解析】直接利用全稱命題的否定是特稱命題寫出結(jié)果即可【詳解】因為全稱命題的否定為特稱命題,故命題“,”的否定為:“,”故答案為:“,”16、【解析】對分類討論,利用正弦函數(shù)的圖象求出和,代入,解出的范圍,即可得解.【詳解】當(dāng),即時,,,因為,所以不成立;當(dāng),即時,,,不滿足;當(dāng),即時,,,由得,得,得;當(dāng),即時,,,由得,得,得,得;當(dāng),即時,,,不滿足;當(dāng),即時,,,不滿足.綜上所述:.所以得最大值為故答案為:【點睛】關(guān)鍵點點睛:對分類討論,利用正弦函數(shù)的圖象求出和是解題關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由偶函數(shù)的定義得對任意的實數(shù)恒成立,進而整理得恒成立,故;(2)設(shè),進而得唯一實數(shù)根,使得,即,故,再結(jié)合得得答案.【小問1詳解】解:因為是偶函數(shù),所以對于任意的實數(shù),有,所以對任意的實數(shù)恒成立,即恒成立,所以,即,【小問2詳解】解:設(shè),因為當(dāng)時,,所以在區(qū)間上無實數(shù)根,當(dāng)時,因為,,所以,使得,又在上單調(diào)遞減,所以存在唯一實數(shù)根;因為,所以,又,所以,所以.所以18、(1)3;(2)或【解析】(1)由,利用基本不等式即可求解.(2)由題意可得,解一元二次不等式即可求解.【詳解】解:(1),,,當(dāng)且僅當(dāng),即時取等號,的最小值為3;(2)由題知,令,解得或∴函數(shù)定義域為或19、(1),;(2).【解析】(1)由給定條件列出關(guān)于,的方程組,解之即得;(2)由(1)的結(jié)論列出指數(shù)方程,借助換元法即可作答.【詳解】(1)由題意可得,解得,,(2)由(1)可得,而,且,于是有,設(shè),,從而得,解得,即,解得,所以滿足條件的.20、(1)見解析;(2)見解析;(3)【解析】利用定義證明即可;把看成整體,研究對勾函數(shù)的單調(diào)性以及利用復(fù)合函數(shù)的單調(diào)性的性質(zhì)得到該函數(shù)的單調(diào)性;對于任意的,總存在,使得可轉(zhuǎn)化成的值域為的值域的子集,建立關(guān)系式,解之即可【詳解】證明::設(shè),,且,,,,,當(dāng)時,即,當(dāng)時,即,當(dāng)時,,即,此時函數(shù)為減函數(shù),當(dāng)時,,即,此時函數(shù)為增函數(shù),故在上是減函數(shù),在上是增函數(shù);當(dāng)時,,,設(shè),則,,由可知在上是減函數(shù),在上是增函數(shù);,,即,,即在上是減函數(shù),在上是增函數(shù);由于減函數(shù),故,又由(2)得由題意,的值域為的值域的子集,從而有,解得【點睛】本題主要考查定義法證明函數(shù)單調(diào)性,利用單調(diào)性求函數(shù)的值域,以及函數(shù)恒成立問題,同時考查了轉(zhuǎn)化的思想和運算求解的能力,是中檔題21、(1);(2).【解析】(Ⅰ)由圖象可知A=2,=-=,∴T=2,ω==π將點(,2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論