江西省吉安市一中2026屆高二數(shù)學第一學期期末調研模擬試題含解析_第1頁
江西省吉安市一中2026屆高二數(shù)學第一學期期末調研模擬試題含解析_第2頁
江西省吉安市一中2026屆高二數(shù)學第一學期期末調研模擬試題含解析_第3頁
江西省吉安市一中2026屆高二數(shù)學第一學期期末調研模擬試題含解析_第4頁
江西省吉安市一中2026屆高二數(shù)學第一學期期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省吉安市一中2026屆高二數(shù)學第一學期期末調研模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線經過兩個定點,,則直線傾斜角大小是()A. B.C. D.2.橢圓中以點為中點的弦所在直線斜率為()A. B.C. D.3.已知函數(shù),若對任意兩個不等的正數(shù),,都有恒成立,則a的取值范圍為()A. B.C. D.4.設P為橢圓C:上一點,,分別為左、右焦點,且,則()A. B.C. D.5.平行直線:與:之間的距離等于()A. B.C. D.6.已知向量,,且,則的值是()A. B.C. D.7.第24屆冬季奧林匹克運動會,將在2022年2月4日在中華人民共和國北京市和張家口市聯(lián)合舉行.這是中國歷史上第一次舉辦冬季奧運會,北京成為奧運史上第一個舉辦夏季奧林匹克運動會和冬季奧林匹克運動會的城市.同時中國也成為第一個實現(xiàn)奧運“全滿貫”(先后舉辦奧運會、殘奧會、青奧會、冬奧會、冬殘奧會)國家.根據規(guī)劃,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結構鳥瞰圖如圖所示,內外兩圈的鋼骨架是離心率相同的橢圓,若由外層橢圓長軸一端點和短軸一端點分別向內層橢圓引切線,(如圖),且兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.8.某學校要從5名男教師和3名女教師中隨機選出3人去支教,則抽取的3人中,女教師最多為1人的選法種數(shù)為()A.10 B.30C.40 D.469.已知數(shù)列為等比數(shù)列,則“為常數(shù)列”是“成等差數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件10.設函數(shù),則()A.4 B.5C.6 D.711.過雙曲線的右焦點有一條弦是左焦點,那么的周長為()A.28 B.C. D.12.下列函數(shù)中,以為最小正周期,且在上單調遞減的為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點且與直線垂直的直線方程為______14.曲線在點處的切線與坐標軸圍成的三角形面積為__________.15.過圓上一點的圓的切線的一般式方程為________16.已知拋物線的頂點為O,焦點為F,動點B在C上,若點B,O,F(xiàn)構成一個斜三角形,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖像在(為自然對數(shù)的底數(shù))處取得極值.(1)求實數(shù)的值;(2)若不等式在恒成立,求的取值范圍.18.(12分)等比數(shù)列的各項均為正數(shù),且,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列前項和.19.(12分)設函數(shù)(1)求在處的切線方程;(2)求在上的最大值與最小值20.(12分)已知拋物線的焦點到準線的距離為2.(1)求C的方程:(2)過C上一動點P作圓兩條切線,切點分別為A,B,求四邊形PAMB面積的最小值.21.(12分)設等差數(shù)列的前n項和為,已知(1)求數(shù)列通項公式;(2)設,數(shù)列的前n項和為.定義為不超過x的最大整數(shù),例如.當時,求n的值22.(10分)已知圓的圓心在直線上,且圓經過點與點.(1)求圓的方程;(2)過點作圓的切線,求切線所在的直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由兩點坐標求出斜率,再得傾斜角【詳解】由已知直線的斜率為,所以傾斜角為故選:A2、A【解析】先設出弦的兩端點的坐標,分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率【詳解】設弦的兩端點為,,代入橢圓得兩式相減得,即,即,即,即,弦所在的直線的斜率為,故選:A3、A【解析】將已知條件轉化為時恒成立,利用參數(shù)分離的方法求出a的取值范圍【詳解】對任意都有恒成立,則時,,當時恒成立,

,當時恒成立,,故選:A4、B【解析】根據橢圓的定義寫出,再根據條件即可解得答案.【詳解】根據P為橢圓C:上一點,則有,又,所以,故選:B.5、B【解析】先由兩條直線平行解出,再按照平行線之間距離公式求解.【詳解】,則:,即,距離為.故選:B.6、A【解析】求出向量,的坐標,利用向量數(shù)量積坐標表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.7、B【解析】分別設內外層橢圓方程為、,進而設切線、分別為、,聯(lián)立方程組整理并結合求、關于a、b、m的關系式,再結合已知得到a、b的齊次方程求離心率即可.【詳解】若內層橢圓方程為,由離心率相同,可設外層橢圓方程為,∴,設切線為,切線為,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故選:B.【點睛】關鍵點點睛:根據內外橢圓的離心率相同設橢圓方程,并寫出切線方程,聯(lián)立方程結合及已知條件,得到橢圓參數(shù)的齊次方程求離心率.8、C【解析】可分為女教師0人,男教師3人和女教師1人,男教師2人兩種情況,用組合數(shù)表示計算即得解【詳解】女教師最多為1人即女教師為0人或者1人若女教師為0人,則男教師有3人,有種選擇;若女教師為1人,則男教師2人,有種選擇;故女教師最多為1人的選法種數(shù)為種故選:C9、C【解析】先考慮充分性,再考慮必要性即得解.【詳解】解:如果為常數(shù)列,則成等差數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的充分條件;等差數(shù)列,所以,所以數(shù)列為,所以數(shù)列是常數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的必要條件.所以“為常數(shù)列”是“成等差數(shù)列”的充要條件.故選:C10、D【解析】求出函數(shù)的導數(shù),將x=1代入即可求得答案.【詳解】,故,故選:D.11、C【解析】根據雙曲線方程得,,由雙曲線的定義,證出,結合即可算出△的周長【詳解】雙曲線方程為,,根據雙曲線的定義,得,,,,相加可得,,,因此△的周長,故選:C12、B【解析】A.利用正切函數(shù)的性質判斷;B.作出的圖象判斷;C.作出的圖象判斷;D.作出的圖象判斷.【詳解】A.是以為最小正周期,在上單調遞增,故錯誤;B.如圖所示:,由圖象知:函數(shù)是以為最小正周期,在上單調遞減,故正確;C.如圖所示:,由圖象知:是以為最小正周期,在上單調遞增,故錯誤;D.如圖所示:,由圖象知:是以為最小正周期,在上單調遞增,故錯誤;故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先設出與直線垂直的直線方程,再把代入進行求解.【詳解】設與直線垂直的直線為,將代入得:,解得:,故所求直線方程為.故答案為:14、【解析】運用導數(shù)的幾何意義進行求解即可.【詳解】由,所以,而,所以切線方程為:,令,得,令,得,所以三角形的面積為:,故答案為:15、【解析】求出過切線的半徑所在直線斜率,由垂直關系得切線斜率,然后得直線方程,現(xiàn)化為一般式【詳解】圓心為,,所以切線的斜率為,切線方程為,即故答案為:【點睛】本題考查求過圓上一點的圓的切線方程,利用切線性質求得斜率后易得直線方程16、2【解析】畫出簡單示意圖,令,根據拋物線定義可得,應用數(shù)形結合及B在C上,求目標式的值.【詳解】如下圖,令,直線為拋物線準線,軸,由拋物線定義知:,又且,所以,故,又,故.故答案為:2.【點睛】關鍵點點睛:應用拋物線的定義將轉化為,再由三角函數(shù)的定義及點在拋物線上求值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由求得的值.(2)由分離常數(shù),通過構造函數(shù)法,結合導數(shù)求得的取值范圍.【小問1詳解】因為,所以,因為函數(shù)的圖像在點處取得極值,所以,,經檢驗,符合題意,所以;【小問2詳解】由(1)知,,所以在恒成立,即對任意恒成立.令,則.設,易得是增函數(shù),所以,所以,所以函數(shù)在上為增函數(shù),則,所以.18、(1);(2).【解析】(1)根據題意求出首項和公比即可得出通項公式;(2)可得是等差數(shù)列,利用等差數(shù)列前n項和公式即可求出.【詳解】解:(1)設等比數(shù)列的公比為,則,由題意得,解得,因此,;(2),則,所以,數(shù)列是等差數(shù)列,首項,記數(shù)列前項和為,則.19、(1)(2),【解析】(1)對函數(shù)求導,然后求出,,運用點斜式即可求出切線方程;(2)利用導數(shù)研究出函數(shù)在區(qū)間的單調性,即可求出函數(shù)在區(qū)間上的最大值與最小值【小問1詳解】,,,所以在點處的切線方程為,即.【小問2詳解】,因為,所以與同號,令則,由,得,此時為減函數(shù),由,得,此時為增函數(shù),則,故,在單調遞增,所以,20、(1)(2)【解析】(1)根據拋物線方程求出交點坐標和準線方程,求出p即可;(2)設,利用兩點坐標求距離公式求出,根據四邊形PAMB的面積得到關于的二次函數(shù),結合二次函數(shù)的性質即可得出結果.【小問1詳解】因為C的焦點為,準線為,由題意得,即,因此.【小問2詳解】圓M的圓心為,半徑為1.由條件可知,,且,于是.設,則.當時等號成立,所以四邊形PAMB面積的最小值為.21、(1)(2)10【解析】(1)由等差數(shù)列的前項和公式求得公差,可得通項公式;(2)用裂項相消法求和求得,根據新定義求得,然后分組,結合等差數(shù)列的前項和公式計算后解方程可得【小問1詳解】設等差數(shù)列的公差為d,因為,則.因為,則,得.所以數(shù)列的通項公式是【小問2詳解】因為,則所以.當時,因為,則.當時,因為,則.因為,則,即,即,即.因為,所以22、(1);(2)或.【解析】(1)求出線段中點,進而得到線段的垂直平分線為,與聯(lián)立得交點,∴.則圓的方程可求(2)當切線斜率不存在時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論