版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
成才之路2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.窗花是貼在窗紙或窗戶玻璃上的剪紙,是古老的傳統(tǒng)民間藝術(shù)之一.如圖是一個(gè)窗花的圖案,以正六邊形各頂點(diǎn)為圓心、邊長(zhǎng)為半徑作圓,陰影部分為其公共部分.現(xiàn)從該正六邊形中任取一點(diǎn),則此點(diǎn)取自于陰影部分的概率為()A. B.C. D.2.設(shè)為坐標(biāo)原點(diǎn),直線與拋物線C:交于,兩點(diǎn),若,則的焦點(diǎn)坐標(biāo)為()A. B.C. D.3.已知圓,若存在過(guò)點(diǎn)的直線與圓C相交于不同兩點(diǎn)A,B,且,則實(shí)數(shù)a的取值范圍是()A. B.C. D.4.在正方體中,為棱的中點(diǎn),則異面直線與所成角的正切值為A. B.C. D.5.如圖,在棱長(zhǎng)為的正方體中,為線段的中點(diǎn),為線段的中點(diǎn),則直線到直線的距離為()A. B.C. D.6.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為A.2 B.3C.4 D.57.拋物線y=4x2的焦點(diǎn)坐標(biāo)是()A.(0,1) B.(1,0)C. D.8.等差數(shù)列中,,,則()A.1 B.2C.3 D.49.某企業(yè)甲車間有200人,乙車間有300人,現(xiàn)用分層抽樣的方法在這兩個(gè)車間中抽取25人進(jìn)行技能考核,則從甲車間抽取的人數(shù)應(yīng)為()A.5 B.10C.8 D.910.雙曲線的兩個(gè)焦點(diǎn)坐標(biāo)是()A.和 B.和C.和 D.和11.已知直線l與圓交于A,B兩點(diǎn),點(diǎn)滿足,若AB的中點(diǎn)為M,則的最大值為()A. B.C. D.12.命題“,”的否定是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩名學(xué)生通過(guò)某次聽(tīng)力測(cè)試的概率分別為和,且是否通過(guò)聽(tīng)力測(cè)試相互獨(dú)立,兩人同時(shí)參加測(cè)試,其中有且只有一人能通過(guò)的概率是__________14.已知曲線在點(diǎn)處的切線與曲線相切,則______.15.若平面內(nèi)兩定點(diǎn)A,B間的距離為2,動(dòng)點(diǎn)P滿足,則的最小值為_(kāi)________.16.已知橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B,且直線l與橢圓交于C,D兩點(diǎn),若直線l直線AB,設(shè)直線AC,BD的斜率分別為,,則的值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)2021年11月初某市出現(xiàn)新冠病毒感染者,該市教育局部署了“停課不停學(xué)”的行動(dòng),老師們立即開(kāi)展了線上教學(xué).某中學(xué)為了解教學(xué)效果,于11月30日復(fù)課第一天安排了測(cè)試,數(shù)學(xué)教師為了調(diào)查高二年級(jí)學(xué)生這次測(cè)試的數(shù)學(xué)成績(jī)與每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)之間的相關(guān)關(guān)系,對(duì)在校高二學(xué)生隨機(jī)抽取45名進(jìn)行調(diào)查,了解到其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過(guò)1小時(shí),并得到如下的統(tǒng)計(jì)圖:(1)根據(jù)統(tǒng)計(jì)圖填寫下面列聯(lián)表,是否有95%的把握認(rèn)為“高二學(xué)生的這次摸底考試數(shù)學(xué)成績(jī)與其每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)有關(guān)”;數(shù)學(xué)成績(jī)不超過(guò)120分?jǐn)?shù)學(xué)成績(jī)超過(guò)120分總計(jì)每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過(guò)1小時(shí)25每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過(guò)1小時(shí)總計(jì)45(2)從被抽查的,且這次數(shù)學(xué)成績(jī)超過(guò)120分的學(xué)生中,按分層抽樣的方法抽取5名,再?gòu)倪@5名同學(xué)中隨機(jī)抽取2名,求這兩名同學(xué)中至多有一名每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過(guò)1小時(shí)的概率附:,其中.參考數(shù)據(jù):0.1000.0500.0100.0012.7063.8416.63510.82818.(12分)已知函數(shù)(1)當(dāng)時(shí),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),證明:存在最大值,且恒成立.19.(12分)在等比數(shù)列中,已知,(1)若,求數(shù)列的前項(xiàng)和;(2)若以數(shù)列中的相鄰兩項(xiàng),構(gòu)造雙曲線,求證:雙曲線系中所有雙曲線的漸近線、離心率都相同20.(12分)如圖,在四棱柱中,側(cè)棱底面,,,,,,,()(1)求證:平面;(2)若直線與平面所成角的正弦值為,求的值;(3)現(xiàn)將與四棱柱形狀和大小完全相同的兩個(gè)四棱柱拼成一個(gè)新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問(wèn)共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的解析式.(直接寫出答案,不必說(shuō)明理由)21.(12分)已知拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且拋物線上的點(diǎn)到焦點(diǎn)的距離是5.(1)求該拋物線的標(biāo)準(zhǔn)方程和的值;(2)若過(guò)點(diǎn)的直線與該拋物線交于,兩點(diǎn),求證:為定值.22.(10分)已知圓的方程為:.(1)求的值,使圓的周長(zhǎng)最小;(2)過(guò)作直線,使與滿足(1)中條件的圓相切,求的方程,并求切線段的長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】求得陰影部分的面積,結(jié)合幾何概型概率計(jì)算公式,計(jì)算出所求的概率.【詳解】設(shè)正六邊形的邊長(zhǎng)為,則其面積為.陰影部分面積為,故所求概率為.故選:D2、B【解析】根據(jù)題中所給的條件,結(jié)合拋物線的對(duì)稱性,可知,從而可以確定出點(diǎn)的坐標(biāo),代入方程求得的值,進(jìn)而求得其焦點(diǎn)坐標(biāo),得到結(jié)果.【詳解】因?yàn)橹本€與拋物線交于兩點(diǎn),且,根據(jù)拋物線的對(duì)稱性可以確定,所以,代入拋物線方程,求得,所以其焦點(diǎn)坐標(biāo)為,故選:B.【點(diǎn)睛】該題考查的是有關(guān)圓錐曲線的問(wèn)題,涉及到的知識(shí)點(diǎn)有直線與拋物線的交點(diǎn),拋物線的對(duì)稱性,點(diǎn)在拋物線上的條件,拋物線的焦點(diǎn)坐標(biāo),屬于簡(jiǎn)單題目.3、D【解析】根據(jù)圓的割線定理,結(jié)合圓的性質(zhì)進(jìn)行求解即可.【詳解】圓的圓心坐標(biāo)為:,半徑,由圓的割線定理可知:,顯然有,或,因?yàn)椋?,于是有,因?yàn)椋?,而,或,所以,故選:D4、C【解析】利用正方體中,,將問(wèn)題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進(jìn)行計(jì)算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長(zhǎng)為,則由為棱的中點(diǎn),可得,所以,則.故選C.【點(diǎn)睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個(gè)平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因?yàn)橹本€夾角為銳角,所以②對(duì)應(yīng)的余弦取絕對(duì)值即為直線所成角的余弦值.5、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉(zhuǎn)化成點(diǎn)到直線的距離,結(jié)合余弦定理即同角三角函數(shù)基本關(guān)系,求得,因此可得,進(jìn)而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因?yàn)?,分別為,的中點(diǎn),因?yàn)椋?,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因?yàn)?,所以是銳角,所以,在直角三角形中,,故直線到直線的距離為;故選:C6、D【解析】拋物線焦點(diǎn)在軸上,開(kāi)口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評(píng):拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡(jiǎn)化運(yùn)算.7、C【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此可拋物線的焦點(diǎn)坐標(biāo)得選項(xiàng).【詳解】解:將拋物線y=4x2的化為標(biāo)準(zhǔn)方程為x2=y(tǒng),p=,開(kāi)口向上,焦點(diǎn)在y軸的正半軸上,故焦點(diǎn)坐標(biāo)為(0,).故選:C8、B【解析】根據(jù)給定條件利用等差數(shù)列性質(zhì)直接計(jì)算作答.【詳解】在等差數(shù)列中,因,,而,于是得,解得,所以.故選:B9、B【解析】根據(jù)分層抽樣的定義即可求解.【詳解】從甲車間抽取的人數(shù)為人故選:B10、C【解析】由雙曲線標(biāo)準(zhǔn)方程可得到焦點(diǎn)所在軸及半焦距的長(zhǎng),進(jìn)而得到兩個(gè)焦點(diǎn)坐標(biāo).【詳解】雙曲線中,,則又雙曲線焦點(diǎn)在y軸,故雙曲線的兩個(gè)焦點(diǎn)坐標(biāo)是和故選:C11、A【解析】設(shè),,則、,由點(diǎn)在圓上可得,再由向量垂直的坐標(biāo)表示可得,進(jìn)而可得M的軌跡為圓,即可求的最大值.【詳解】設(shè),中點(diǎn),則,,又,,則,所以,又,則,而,,所以,即,綜上,,整理得,即為M的軌跡方程,所以在圓心為,半徑為的圓上,則.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由點(diǎn)圓位置、中點(diǎn)坐標(biāo)公式及向量垂直的坐標(biāo)表示得到關(guān)于的軌跡方程.12、D【解析】根據(jù)含一個(gè)量詞的命題的否定方法:修改量詞,否定結(jié)論,直接得到結(jié)果.【詳解】命題“,”的否定是“,”.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】分兩種情況,結(jié)合相互獨(dú)立事件公式即可求解.【詳解】記甲,乙通過(guò)聽(tīng)力測(cè)試的分別為事件,則可得,兩人有且僅有一人通過(guò)為事件,故所求事件概率為.故答案為:14、2或10【解析】求出在處的導(dǎo)數(shù),得出切線方程,與聯(lián)立,利用可求.【詳解】令,,則,,可得曲線在點(diǎn)處的切線方程為.聯(lián)立,得,,解得或.故答案為:2或10.15、【解析】建立直角坐標(biāo)系,設(shè)出P的坐標(biāo),求出軌跡方程,然后推出的表達(dá)式,轉(zhuǎn)化求解最小值即可.【詳解】以經(jīng)過(guò)A,B的直線為x軸,線段AB的垂直平分線為y軸建立直角坐標(biāo)系.則設(shè),由,則,所以兩邊平方并整理得,所以P點(diǎn)的軌跡是以(3,0)為圓心,為半徑的圓,所以,,則有,則的最小值為.故答案為:.16、##0.25【解析】求出點(diǎn)A,B坐標(biāo),設(shè)出直線l的方程,聯(lián)立直線l與橢圓方程,借助韋達(dá)定理即可計(jì)算作答.【詳解】依題意,點(diǎn),直線AB斜率為,因直線l直線AB,則設(shè)直線l方程為:,,由消去y并整理得:,,解得,于是有或,設(shè),則,有,因此,,所以的值為.故答案:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)表格見(jiàn)解析,有(2)【解析】(1)根據(jù)統(tǒng)計(jì)圖計(jì)算填表即可;(2)根據(jù)古典概型計(jì)算公式計(jì)算即可.【小問(wèn)1詳解】根據(jù)統(tǒng)計(jì)圖可得:每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過(guò)1小時(shí)數(shù)學(xué)成績(jī)不超過(guò)120分的有人,每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過(guò)1小時(shí)數(shù)學(xué)成績(jī)超過(guò)120分的有人,每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過(guò)1小時(shí)數(shù)學(xué)成績(jī)不超過(guò)120分的有人,每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過(guò)1小時(shí)數(shù)學(xué)成績(jī)超過(guò)120分的有人,可得列聯(lián)表如下:數(shù)學(xué)成績(jī)不超過(guò)120分?jǐn)?shù)學(xué)成績(jī)超過(guò)120分總計(jì)每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過(guò)1小時(shí)151025每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過(guò)1小時(shí)51520總計(jì)202545根據(jù)列聯(lián)表中的數(shù)據(jù),所以有95%的把握認(rèn)為“高二學(xué)生的這次摸底考試數(shù)學(xué)成績(jī)與其每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)有關(guān)”【小問(wèn)2詳解】由列聯(lián)表可得,被抽查學(xué)生中這次數(shù)學(xué)成績(jī)超過(guò)120分的有25人,其中每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過(guò)1小時(shí)的有10人,每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過(guò)1小時(shí)的有15人,人數(shù)比為2∶3,按分層抽樣每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過(guò)1小時(shí)的抽2人,記為:1,2;每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過(guò)1小時(shí)的抽3人,記為:a,b,c.所有可能結(jié)果如下:,共計(jì)10種.設(shè)事件A為“兩名同學(xué)中至多有一名每天在線學(xué)習(xí)數(shù)學(xué)時(shí)長(zhǎng)超過(guò)一小時(shí)”包含這7種可能結(jié)果所以18、(1)的單增區(qū)間為,;單減區(qū)間為,,;(2)證明見(jiàn)解析.【解析】(1)先求出函數(shù)的定義域,求出,由,結(jié)合函數(shù)的定義域可得出函數(shù)的單調(diào)區(qū)間.(2)當(dāng)時(shí),定義域R,求出,從而得出單調(diào)區(qū)間,由當(dāng)時(shí),,當(dāng)時(shí),,以及極值點(diǎn)與2的大小關(guān)系可得出當(dāng)時(shí),函數(shù)有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無(wú)0無(wú)0減無(wú)減增無(wú)增減所以,的單增區(qū)間為,;單減區(qū)間為,,.(2)當(dāng)時(shí),定義域R因?yàn)椋?dāng)時(shí),,當(dāng)時(shí),,所以的最大值在時(shí)取得;由,即,得由,得,或由,得所以在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.當(dāng)時(shí),,且,由所以當(dāng)時(shí),函數(shù)有最大值.所以,因?yàn)?,所?設(shè),則所以化為由,則,則,所以所以19、(1);(2)證明過(guò)程見(jiàn)解析.【解析】(1)根據(jù)等比數(shù)列的通項(xiàng)公式,結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì)、等比數(shù)列和等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可;(2)根據(jù)等比數(shù)列的通項(xiàng)公式,結(jié)合雙曲線漸近線方程和離心率公式進(jìn)行證明即可.【小問(wèn)1詳解】設(shè)等比數(shù)列的公比為,因?yàn)椋?,因此,所以,所以;【小?wèn)2詳解】由(1)知,在雙曲線中,,所以得,因此雙曲線的漸近線方程為:,雙曲線的離心率為:,所以雙曲線系中所有雙曲線的漸近線、離心率都相同.20、(1)證明見(jiàn)解析(2)(3)【解析】(1)取得中點(diǎn),連接,可證明四邊形是平行四邊形,再利用勾股定理的逆定理可得,即,又側(cè)棱底面,可得,利用線面垂直的判定定理即可證明;(2)通過(guò)建立空間直角坐標(biāo)系,由線面角的向量公式即可得出;(3)由題意可與左右平面,,上或下面,拼接得到方案,新四棱柱共有此4種不同方案.寫出每一方案下的表面積,通過(guò)比較即可得出【詳解】(1)證明:取的中點(diǎn),連接,,,四邊形是平行四邊形,,且,,,,又,側(cè)棱底面,,,平面(2)以為坐標(biāo)原點(diǎn),、、的方向?yàn)檩S的正方向建立空間直角坐標(biāo)系,則,,,,,設(shè)平面的一個(gè)法向量為,則,取,則,設(shè)與平面所成角為,則,解得,故所求(3)由題意可與左右平面,,上或下面,拼接得到方案新四棱柱共有此4種不同方案寫出每一方案下的表面積,通過(guò)比較即可得出【點(diǎn)睛】本題主要考查線面垂直的判定定理的應(yīng)用,利用向量求線面角、柱體的定義應(yīng)用和表面積的求法,意在考查學(xué)生的直觀想象能力,邏輯推理能力,數(shù)學(xué)運(yùn)算能力及化歸與轉(zhuǎn)化能力,屬于中檔題21、(1),(2)證明見(jiàn)解析【解析】(1)根據(jù)點(diǎn)到焦點(diǎn)的距離等于5,利用拋物線的定義求得p,進(jìn)而得到拋物線方程,然后將
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年廣東省外語(yǔ)藝術(shù)職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)附答案
- 2025年春季中國(guó)鐵塔校園招聘?jìng)淇碱}庫(kù)附答案
- 2026北京市懷柔區(qū)招聘21名國(guó)有企業(yè)管培生筆試參考題庫(kù)及答案解析
- 2026天津東麗經(jīng)開(kāi)區(qū)國(guó)有公司中層管理崗選聘4人筆試參考題庫(kù)及答案解析
- 2026國(guó)家電投集團(tuán)創(chuàng)新投資招聘1人筆試參考題庫(kù)及答案解析
- 2026廣西河池市廣電網(wǎng)絡(luò)科技發(fā)展有限公司大化分公司招聘4人筆試參考題庫(kù)及答案解析
- 2025河北承德縣人力資源和社會(huì)保障局招聘公益性崗位人員(公共基礎(chǔ)知識(shí))測(cè)試題附答案
- 2025年棗莊嶧城區(qū)衛(wèi)生健康系統(tǒng)公開(kāi)招聘工作人員筆試考試題庫(kù)附答案
- 2025安徽省科技成果轉(zhuǎn)化促進(jìn)中心(安徽省科學(xué)技術(shù)研究院)第二批高層次人才招聘3人參考題庫(kù)附答案
- 2026年云南勐海產(chǎn)業(yè)園區(qū)管理委員會(huì)招聘公益性崗位人員(2人)筆試參考題庫(kù)及答案解析
- 2025年北京市海淀區(qū)中小學(xué)教師招聘筆試參考試題及答案解析
- 全科接診流程訓(xùn)練
- 2026年新《煤礦安全規(guī)程》培訓(xùn)考試題庫(kù)(附答案)
- 繼續(xù)教育部門述職報(bào)告
- 魚(yú)塘測(cè)量施工方案
- 鋁錠采購(gòu)正規(guī)合同范本
- 湖北省宜昌市秭歸縣2026屆物理八年級(jí)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析
- 重慶水利安全員c證考試題庫(kù)和及答案解析
- 城市更新能源高效利用方案
- 2025秋期版國(guó)開(kāi)電大本科《理工英語(yǔ)4》一平臺(tái)綜合測(cè)試形考任務(wù)在線形考試題及答案
- 2025 精神護(hù)理人員職業(yè)倦怠預(yù)防課件
評(píng)論
0/150
提交評(píng)論