版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省玉溪市峨山縣三中2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,則點C到直線AB的距離為()A.3 B.C. D.2.已知數(shù)列滿足,且,為其前n項的和,則()A. B.C. D.3.已知點為雙曲線的左頂點,點和點在雙曲線的右分支上,是等邊三角形,則的面積是A. B.C. D.4.實數(shù)m變化時,方程表示的曲線不可以是()A.直線 B.圓C橢圓 D.雙曲線5.等差數(shù)列中,是的前項和,,則()A.40 B.45C.50 D.556.宋元時期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生"的問題,松長三尺,竹長一尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.27.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.8.甲乙兩個雷達獨立工作,它們發(fā)現(xiàn)飛行目標的概率分別是0.9和0.8,飛行目標被雷達發(fā)現(xiàn)的概率為()A.0.72 B.0.26C.0.7 D.0.989.數(shù)列是等比數(shù)列,是其前n項之積,若,則的值是()A.1024 B.256C.2 D.51210.橢圓的焦點為F1,F(xiàn)2,點P在橢圓上,若|PF1|=4,則∠F1PF2的余弦值為A. B.C. D.11.如圖,在棱長為2的正方體中,點P在截面上(含邊界),則線段的最小值等于()A. B.C. D.12.“”是“直線與直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的兩條漸近線的夾角為,則_______14.曲線在x=1處的切線方程為__________.15.已知正方體,點在底面內(nèi)運動,且始終保持平面,設(shè)直線與底面所成的角為,則的最大值為______.16.兩條平行直線與的距離是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的左、右焦點分別為,.點滿足.(1)求橢圓的離心率;(2)設(shè)直線與橢圓相交于,兩點,若直線與圓相交于,兩點,且,求橢圓的方程.18.(12分)某城市地鐵公司為鼓勵人們綠色出行,決定按照乘客經(jīng)過地鐵站的數(shù)量實施分段優(yōu)惠政策,不超過12站的地鐵票價如下表:乘坐站數(shù)票價(元)246現(xiàn)有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過12站,且他們各自在每個站下地鐵的可能性是相同的.(1)若甲、乙兩人共付費6元,則甲、乙下地鐵的方案共有多少種?(2)若甲、乙兩人共付費8元,則甲比乙先下地鐵的方案共有多少種?19.(12分)如圖,在四棱錐P-ABCD中,底面四邊形ABCD為直角梯形,,,,O為BD的中點,,(1)證明:平面ABCD;(2)求平面PAD與平面PBC所成銳二面角的余弦值20.(12分)已知甲射擊的命中率為0.7.乙射擊的命中率為0.8,甲乙兩人的射擊互相獨立.求:(1)甲乙兩人同時擊中目標的概率;(2)甲乙兩人中至少有一個人擊中目標的概率;(3)甲乙兩人中恰有一人擊中目標的概率21.(12分)設(shè)函數(shù)(I)求曲線在點處的切線方程;(II)設(shè),若函數(shù)有三個不同零點,求c的取值范圍22.(10分)已知函數(shù),且a0(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)記函數(shù),若函數(shù)有兩個零點,①求實數(shù)a的取值范圍;②證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】應(yīng)用空間向量的坐標運算求在上投影長及的模長,再應(yīng)用勾股定理求點C到直線AB的距離.【詳解】因為,,所以設(shè)點C到直線AB的距離為d,則故選:D2、B【解析】根據(jù)等比數(shù)列的前n項和公式即可求解.【詳解】由題可知是首項為2,公比為3的等比數(shù)列,則.故選:B.3、C【解析】設(shè)點在軸上方,由是等邊三角形得直線斜率.又直線過點,故方程為.代入雙曲線方程,得點的坐標為.同理可得,點的坐標為.故的面積為,選C.4、B【解析】根據(jù)的取值分類討論說明【詳解】時方程化為,為直線,時,方程化為,為橢圓,時,方程化為,為雙曲線,而,因此曲線不可能是圓故選:B5、B【解析】應(yīng)用等差數(shù)列的性質(zhì)“若,則”即可求解【詳解】故選:B6、B【解析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案【詳解】解:當n=1時,a=3,b=2,滿足進行循環(huán)的條件,當n=2時,a,b=4,滿足進行循環(huán)的條件,當n=3時,a,b=8,滿足進行循環(huán)的條件,當n=4時,a,b=16,不滿足進行循環(huán)的條件,故輸出的n值為4,故選:B【點睛】本題考查的知識點是程序框圖,當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答7、A【解析】結(jié)合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設(shè)左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A8、D【解析】利用對立事件的概率求法求飛行目標被雷達發(fā)現(xiàn)的概率.【詳解】由題設(shè),飛行目標不被甲、乙發(fā)現(xiàn)的概率分別為、,所以飛行目標被雷達發(fā)現(xiàn)的概率為.故選:D9、D【解析】設(shè)數(shù)列的公比為q,由已知建立方程求得q,再利用等比數(shù)列的通項公式可求得答案.【詳解】解:因為數(shù)列是等比數(shù)列,是其前n項之積,,設(shè)數(shù)列的公比為q,所以,解得,所以,故選:D.10、B【解析】根據(jù)題意,橢圓的標準方程為,其中則,則有|F1F2|=2,若a=3,則|PF1|+|PF2|=2a=6,又由|PF1|=4,則|PF2|=6-|PF1|=2,則cos∠F1PF2==.故選B11、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長為2,則,,設(shè)到平面的距離為,由得,解得故選:B12、A【解析】求出兩直線垂直的充要條件后再根據(jù)充分必要條件的定義判斷.【詳解】由,得,即或所以,反之,則不然所以“”是“直線與直線垂直”的充分不必要條件.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】首先判斷漸近線的傾斜角,再求的值.【詳解】由條件可知雙曲線的其中一條漸近線方程是,因為兩條漸近線的夾角是,所以直線的傾斜角是或,即或.故答案為:或14、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求切線方程的斜率并求出,再由點斜式寫出切線方程即可.【詳解】由題設(shè),,則,而,所以在x=1處的切線方程為,即.故答案為:.15、【解析】畫出立體圖形,因為面面,在底面內(nèi)運動,且始終保持平面,可得點在線段上運動,因為面面,直線與底面所成的角和直線與底面所成的角相等,即可求得答案.【詳解】連接和,面面在底面內(nèi)運動,且始終保持平面可得點在線段上運動,面面,直線與底面所成的角和直線與底面所成的角相等面直線與底面所成的角為:有圖像可知:長是定值,當最短時,,即最大,即角最大設(shè)正方體的邊長為,故故答案為:【點睛】本題考查了求線面角的最大值,解題是掌握線面角的定義和處理動點問題時,應(yīng)畫出圖形,尋找?guī)缀侮P(guān)系,考查了分析能力和計算能力,屬于難題.16、5【解析】根據(jù)兩平行直線,可求得a值,根據(jù)兩平行線間距離公式,即可得答案.【詳解】因為兩平行直線與,所以,解得,所以兩平行線的距離.故答案為:5三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由及兩點間距離公式可建立等式,消去b,即可求解出,主要兩個根的的要舍去;(2)聯(lián)立直線和橢圓的方程,利用弦長公式求得,再利用幾何關(guān)系求得,代入,可解得c,從而得到橢圓的方程.【詳解】(1)設(shè),,因為,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得橢圓方程為,直線的方程為,A,B兩點的坐標滿足方程組為,消去y并整理,得,解得:,,得方程組的解和,不妨設(shè):,,所以,于是,圓心到直線的距離為,因為,所以,整理得:,得(舍),或,所以橢圓方程為:.【點睛】關(guān)鍵點點睛:本題考查求橢圓的離心率解題關(guān)鍵是找到關(guān)于a,b,c的等量關(guān)系,第二問的關(guān)鍵是聯(lián)立直線與橢圓方程求出交點坐標,利用距離公式建立等量關(guān)系,求出c是求出橢圓方程的關(guān)鍵.18、(1)24(種)(2)21(種)【解析】(1)先根據(jù)共付費6元得一人付費2元一人付費4元,再確定人與乘坐站數(shù),即可得結(jié)果;(2)先根據(jù)共付費8元得一人付費2元一人付費6元或兩人都付費4元,再求甲比乙先下地鐵的方案數(shù).【小問1詳解】由已知可得:甲、乙兩人共付費6元,則甲、乙一人付費2元一人付費4元,又付費2元的乘坐站數(shù)有1,2,3三種選擇,付費4元的乘坐站數(shù)有4,5,6,7四種選,所以甲、乙下地鐵的方案共有(3×4)×2=24(種).【小問2詳解】甲、乙兩人共付費8元,則甲、乙一人付費2元一人付費6元或兩人都付費4元;當甲付費2元,乙付費6元時,甲乘坐站數(shù)有1,2,3三種選擇,乙乘坐站數(shù)有8,9,10,11,12五種選擇,此時,共有35=15(種)方案;當兩人都付費4元時,若甲在第4站下地鐵,則乙可在第5,6,7站下地鐵,有3種方案;若甲在第5站下地鐵,則乙可在第6,7站下地鐵,有2種方案;若甲在第6站下地鐵,則乙可在第7站下地鐵,有1種方案;綜上,甲比乙先下地鐵的方案共有(種).19、(1)見解析(2)【解析】(1)連接,利用勾股定理證明,又可證明,根據(jù)線面垂直的判定定理證明即可;(2)建立合適的空間直角坐標系,求出所需點的坐標和向量的坐標,然后利用待定系數(shù)法求出平面和平面的法向量,由向量的夾角公式求解即可小問1詳解】證明:如圖,連接,在中,由,可得,因為,,所以,,因為,,,則,故,因為,,,平面,則平面;【小問2詳解】解:由(1)可知,,,兩兩垂直,以點為坐標原點,建立空間直角坐標系如圖所示,則,0,,,0,,,0,,,2,,,0,,所以,則,,,又,設(shè)平面的法向量為,則,令,則,,故,設(shè)平面的法向量為,因為,所以,令,則,,故,所以,故平面與平面所成銳二面角的余弦值為20、(1)0.56(2)0.94(3)0.38【解析】(1)根據(jù)獨立事件的概率公式計算;(2)結(jié)合對立事件的概率公式、獨立事件的概率公式計算(3)利用互斥事件與獨立事件的概率公式計算【小問1詳解】設(shè)甲擊中目標為事件,乙擊中目標為事件,甲乙兩人同時擊中目標的概率;【小問2詳解】甲乙兩人中至少有一個人擊中目標的概率為;【小問3詳解】甲乙兩人中恰有一人擊中目標的概率為21、(1)(2)【解析】(1)由導(dǎo)數(shù)幾何意義得切線斜率為,再根據(jù)點斜式寫切線方程;(2)由函數(shù)圖像可知,極大值大于零且極小值小于零,解不等式可得c的取值范圍試題解析:解:(I)由,得因為,,所以曲線在點處的切線方程為(II)當時,,所以令,得,解得或與在區(qū)間上的情況如下:所以,當且時,存在,,,使得由的單調(diào)性知,當且僅當時,函數(shù)有三個不同零點22、(1)函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減(2)①;②證明見解析【解析】(1)求導(dǎo),求解可得導(dǎo)函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年鋁材環(huán)保鋁材加工合同
- 2026年冷凍豬肉采購合同協(xié)議條款
- 2026年展會搭建支付方式合同協(xié)議
- 蝦塘承包合同
- 培訓(xùn)講師風(fēng)范課件
- 培訓(xùn)類插畫教程課件
- 培訓(xùn)主管安全事跡課件
- 吉林省吉林市2025年七年級上學(xué)期期末考試英語試題附答案
- 唐山鋁廠安全培訓(xùn)班課件
- 華為介紹雙語介紹
- 酒吧消防安培訓(xùn)
- 養(yǎng)老院消防培訓(xùn)方案2025年課件
- Smaart7產(chǎn)品使用說明手冊
- 包裝班組年終總結(jié)
- 瓷磚工程驗收課程
- 2025 小學(xué)二年級數(shù)學(xué)上冊乘法口訣對口令練習(xí)課件
- 專升本旅游管理專業(yè)2025年旅游學(xué)概論試卷(含答案)
- 難治性癌痛護理
- 蘇教版五年級上冊復(fù)習(xí)教案(2025-2026學(xué)年)
- DB15∕T 2431-2021 荒漠藻擴繁培養(yǎng)技術(shù)規(guī)程
- 危險化學(xué)品經(jīng)營企業(yè)安全生產(chǎn)費用提取
評論
0/150
提交評論