2026屆湖南省長沙市天心區(qū)長郡中學數(shù)學高二上期末綜合測試試題含解析_第1頁
2026屆湖南省長沙市天心區(qū)長郡中學數(shù)學高二上期末綜合測試試題含解析_第2頁
2026屆湖南省長沙市天心區(qū)長郡中學數(shù)學高二上期末綜合測試試題含解析_第3頁
2026屆湖南省長沙市天心區(qū)長郡中學數(shù)學高二上期末綜合測試試題含解析_第4頁
2026屆湖南省長沙市天心區(qū)長郡中學數(shù)學高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆湖南省長沙市天心區(qū)長郡中學數(shù)學高二上期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等2.數(shù)列滿足,,則()A. B.C. D.23.設(shè)變量,滿足約束條件,則的最大值為()A.1 B.6C.10 D.134.設(shè)數(shù)列的前項和為,數(shù)列是公比為2的等比數(shù)列,且,則()A.255 B.257C.127 D.1295.在條件下,目標函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.806.120°的二面角的棱上有A,B兩點,直線AC,BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB.已知,,,則CD的長為()A. B.C. D.7.設(shè)點P是函數(shù)圖象上任意一點,點Q的坐標,當取得最小值時圓C:上恰有2個點到直線的距離為1,則實數(shù)r的取值范圍為()A. B.C. D.8.若復數(shù)滿足,則復平面內(nèi)表示的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.設(shè)拋物線C:的焦點為,準線為.是拋物線C上異于的一點,過作于,則線段的垂直平分線()A.經(jīng)過點 B.經(jīng)過點C.平行于直線 D.垂直于直線10.現(xiàn)從名男醫(yī)生和名女醫(yī)生中抽取兩人加入“援鄂醫(yī)療隊”,用表示事件“抽到的兩名醫(yī)生性別相同”,表示事件“抽到的兩名醫(yī)生都是女醫(yī)生”,則()A. B.C. D.11.若集合,,則A. B.C. D.12.下列雙曲線中,焦點在軸上且漸近線方程為的是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線l:y=-x+m與曲線有兩個公共點,則實數(shù)m的取值范圍是_______.14.已知隨機變量,且,則______.15.橢圓的弦被點平分,則這條弦所在的直線方程是________16.不大于100的正整數(shù)中,被3除余1的所有數(shù)的和是___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前n項和為,等比數(shù)列的前n項和為,且,,(1)求,;(2)已知,,試比較,的大小18.(12分)已知雙曲線的左焦點為,到的一條漸近線的距離為1.直線與交于不同的兩點,,當直線經(jīng)過的右焦點且垂直于軸時,.(1)求的方程;(2)是否存在軸上的定點,使得直線過點時,恒有?若存在,求出點的坐標;若不存在,請說明理由.19.(12分)已知定點,動點與連線的斜率之積.(1)設(shè)動點的軌跡為,求的方程;(2)若是上關(guān)于軸對稱的兩個不同點,直線與軸分別交于點.試判斷以為直徑的圓是否過定點,如經(jīng)過,求出定點坐標;如不過定點,請說明理由.20.(12分)已知拋物線的焦點為,點在拋物線上,且點的縱坐標為4,(1)求拋物線的方程;(2)過點作直線交拋物線于兩點,試問拋物線上是否存在定點使得直線與的斜率互為倒數(shù)?若存在求出點的坐標,若不存在說明理由21.(12分)已知過點的圓的圓心M在直線上,且y軸被該圓截得的弦長為4(1)求圓M的標準方程;(2)設(shè)點,若點P為x軸上一動點,求的最小值,并寫出取得最小值時點P的坐標22.(10分)如圖,在正三棱柱中,,,,分別為,,的中點(1)證明:(2)求平面與平面所成銳二面角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C2、C【解析】根據(jù)已知分析數(shù)列周期性,可得答案【詳解】解:∵數(shù)列滿足,,∴,,,,故數(shù)列以4為周期呈現(xiàn)周期性變化,由,故,故選C【點睛】本題考查的知識點是數(shù)列的遞推公式,數(shù)列的周期性,難度中檔3、C【解析】畫出約束條件表示的平面區(qū)域,將變形為,可得需要截距最小,觀察圖象,可得過點時截距最小,求出點A坐標,代入目標式即可.【詳解】解:畫出約束條件表示的平面區(qū)域如圖中陰影部分:又,即,要取最大值,則在軸上截距要最小,觀察圖象可得過點時截距最小,由,得,則.故選:C.4、C【解析】由題設(shè)可得,再由即可求值.【詳解】由數(shù)列是公比為2的等比數(shù)列,且,∴,即,∴.故選:C.5、C【解析】首先畫出可行域,找到最優(yōu)解,得到關(guān)系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標函數(shù)取最大值時必過N點,則則(當且僅當時等號成立)故選:C6、B【解析】由,把展開整理求解【詳解】由已知可得:,,,,=41,∴.故選:B7、C【解析】先求出代表的是以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),數(shù)形結(jié)合得到取得最小值時a的值,得到圓心C,利用點到直線距離求出圓心C到直線的距離,數(shù)形結(jié)合求出半徑r的取值范圍.【詳解】,兩邊平方得:,即點P在以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),如圖所示:因為Q的坐標為,則在直線,過點A作⊥l于點,與半圓交于點,此時長為的最小值,則,所以直線:,與聯(lián)立得:,所以,解得:,則圓C:,則,圓心到直線的距離為,要想圓C上恰有2個點到直線的距離為1,則.故選:C8、A【解析】根據(jù)復數(shù)的運算法則,求得,結(jié)合復數(shù)的幾何意義,即可求解.【詳解】由題意,復數(shù)滿足,可得,所以復數(shù)在復平面內(nèi)對應的點的坐標為,位于第一象限.故選:A.9、A【解析】依據(jù)題意作出焦點在軸上的開口向右的拋物線,根據(jù)垂直平分線的定義和拋物線的定義可知,線段的垂直平分線經(jīng)過點,即可求解.【詳解】如圖所示:因為線段的垂直平分線上的點到的距離相等,又點在拋物線上,根據(jù)定義可知,,所以線段的垂直平分線經(jīng)過點.故選:A.10、A【解析】先求出抽到的兩名醫(yī)生性別相同的事件的概率,再求抽到的兩名醫(yī)生都是女醫(yī)生事件的概率,然后代入條件概率公式即可【詳解】解:由已知得,,則,故選:A【點睛】此題考查條件概率問題,屬于基礎(chǔ)題11、A【解析】通過解不等式得出集合B,可以做出集合A與集合B的關(guān)系示意圖,可得出選項.【詳解】因為,解不等式即,所以或,所以集合,作出集合A與集合B的示意圖如下圖所示:所以:,故選A【點睛】本題考查集合間的交集運算,屬于基礎(chǔ)題.12、C【解析】焦點在軸上的是C和D,漸近線方程為,故選C考點:1.雙曲線的標準方程;2.雙曲線的簡單幾何性質(zhì)二、填空題:本題共4小題,每小題5分,共20分。13、【解析】曲線表示圓的右半圓,結(jié)合的幾何意義,得出實數(shù)m的取值范圍.【詳解】曲線表示圓的右半圓,當直線與相切時,,即,由表示直線的截距,因為直線l與曲線有兩個公共點,由圖可知,所以.故答案為:.14、【解析】根據(jù)二項分布的均值與方差的關(guān)系求得,再根據(jù)方差的性質(zhì)求解即可.【詳解】,所以,又因為,所以故答案為:12【點睛】本題主要考查了二項分布的均值與方差的計算,同時也考查了方差的性質(zhì),屬于基礎(chǔ)題.15、2x+4y-3=0【解析】設(shè)弦端點為,又A,B在橢圓上,、即直線AB的斜率為直線AB的方程為,.16、1717【解析】利用等差數(shù)列的前項和公式可求所有數(shù)的和.【詳解】100以內(nèi)的正整數(shù)中,被3除余1由小到大構(gòu)成等差數(shù)列,其首項為1,公差為3,共有項,它們的和為,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)設(shè)等差數(shù)列的公差,等比數(shù)列的公比,由已知列式計算得解.(2)由(1)的結(jié)論,用等比數(shù)列前n項和公式求出,用裂項相消法求出,再比較大小作答.【小問1詳解】設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,依題意,,整理得:,解得,所以,.【小問2詳解】由(1)知,,數(shù)列是首項為,公比為的等比數(shù)列,則,,,則,用數(shù)學歸納法證明,,①當時,左邊,右邊,左邊>右邊,即原不等式成立,②假設(shè)當時,不等式成立,即,則,即時,原不等式成立,綜合①②知,,成立,因此,,即,所以.18、(1);(2)存在,理由見解析.【解析】(1)根據(jù)題意,列出的方程組,解得,則橢圓方程得解;(2)假設(shè)存在點滿足題意,設(shè)出直線的方程,聯(lián)立雙曲線方程,利用韋達定理以及,即可求解.【小問1詳解】雙曲線的左焦點,其中一條漸近線,則;對雙曲線,令,解得,則,解得,故雙曲線方程為:.小問2詳解】根據(jù)(1)中所求可知,假設(shè)存在軸上的點滿足題意,若直線的斜率不為零,則設(shè)其方程為,聯(lián)立雙曲線方程,可得,則,即,此時直線與雙曲線交于兩點,則,則,即,即,則,此時滿足題意;若直線的斜率為零,且過點,此時,滿足題意.綜上所述,存在軸上的一點滿足.【點睛】本題考察雙曲線方程的求解,以及雙曲線中存在某點滿足條件的問題;解決問題的關(guān)鍵是合理轉(zhuǎn)化,利用韋達定理進行求解,屬綜合中檔題.19、(1);(2)以為直徑的圓過定點,定點坐標為和.【解析】(1)設(shè)動點的坐標,利用斜率坐標公式結(jié)合已知列式即可作答.(2)設(shè)上任意一點,求出點M,N的坐標,再求出以為直徑的圓的方程即可分析作答.【小問1詳解】設(shè)點,則直線PA,PB的斜率分別為:,,依題意,,化簡整理得:,所以的方程是:.【小問2詳解】由(1)知,令是上任意一點,則點,直線:,則點,直線:,則點,以MN為直徑的圓上任意一點,當點Q與M,N都不重合時,,有,當點Q與M,N之一重合時,也成立,因此,以MN為直徑的圓的方程為:,化簡整理得:,而,即,則以MN為直徑的圓的方程化為:,顯然當時,恒有,即圓恒過兩個定點和,所以以為直徑的圓過定點,定點坐標為和.【點睛】知識點睛:以點為直徑兩個端點的圓的方程是:.20、(1)(2)存在,【解析】(1)利用拋物線的焦半徑公式求得點的橫坐標,進而求得p,可得答案;(2)根據(jù)題意可設(shè)直線方程,和拋物線方程聯(lián)立,得到根與系數(shù)的關(guān)系式,利用直線與的斜率互為倒數(shù)列出等式,化簡可得結(jié)論.【小問1詳解】(1)則,,,,故C的方程為:;【小問2詳解】假設(shè)存在定點,使得直線與的斜率互為倒數(shù),由題意可知,直線AB的斜率存在,且不為零,,,,,所以Δ>0y1+即或,,,則,,使得直線與的斜率互為倒數(shù).21、(1)(2),【解析】(1)用待定系數(shù)法設(shè)出圓心,根據(jù)圓過點和弦長列出方程求解即可;(2)當三點共線時有最小值,求出直線MN的方程,令y=0即可.【小問1詳解】由題意可設(shè)圓心,因為y軸被圓M截得的弦長為4,所以,又,則,化簡得,解得,則圓心,半徑,所以圓M的標準方程為【小問2詳解】點關(guān)于x軸的對稱點為,則,當且僅當M,P,三點共線時等號成立,因為,則直線的方程為,即,令,得,則22、(1)證明見解析(2)【解析】(1)由已知,以為坐標原點,建立空間直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論