版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
天津市大良中學2026屆高二上數(shù)學期末學業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列事件:①連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點;②某人買彩票中獎;③從集合中任取兩個不同元素,它們的和大于2;④在標準大氣壓下,水加熱到90℃時會沸騰.其中是隨機事件的個數(shù)是()A.1 B.2C.3 D.42.若向量,,,則()A. B.C. D.3.已知圓M的圓心在直線上,且點,在M上,則M的方程為()A. B.C. D.4.已知等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,則下列說法不正確的是()A.一定單調(diào)遞減 B.一定單調(diào)遞增C.式子-≥0恒成立 D.可能滿足=,且k≠15.若連續(xù)拋擲兩次骰子得到的點數(shù)分別為m,n,則點P(m,n)在直線x+y=4上的概率是()A. B.C. D.6.已知等差數(shù)列的前項和為,若,,則()A. B.C. D.7.在的展開式中,只有第4項的二項式系數(shù)最大,且所有項的系數(shù)和為0,則含的項的系數(shù)為()A.-20 B.-15C.-6 D.158.已知拋物線的準線方程為,則此拋物線的標準方程為()A. B.C. D.9.棱長為1的正四面體的表面積是()A. B.C. D.10.已知雙曲線的右焦點為F,關(guān)于原點對稱的兩點A、B分別在雙曲線的左、右兩支上,,且點C在雙曲線上,則雙曲線的離心率為()A.2 B.C. D.11.已知公差不為0的等差數(shù)列中,(m,),則mn的最大值為()A.6 B.12C.36 D.4812.在四面體中,空間的一點滿足,若共面,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)滿足,且,則的最小值為___________.14.設(shè)分別是平面的法向量,若,則實數(shù)的值是________15.圓與圓的位置關(guān)系為______(填相交,相切或相離).16.已知為數(shù)列{}前n項和,若,且),則=___三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖像為曲線,點、.(1)設(shè)點為曲線上在第一象限內(nèi)的任意一點,求線段的長(用表示);(2)設(shè)點為曲線上任意一點,求證:為常數(shù);(3)由(2)可知,曲線為雙曲線,請研究雙曲線的性質(zhì)(從對稱性、頂點、漸近線、離心率四個角度進行研究).18.(12分)已知橢圓的離心率為,右焦點F到上頂點的距離為.(1)求橢圓的方程;(2)是否存在過點F且與x軸不垂直的直線與橢圓交于A、B兩點,使得點C()在線段AB的中垂線上?若存在,求出直線l:若不存在,說明理曲.19.(12分)已知在數(shù)列中,,且.(1)求,,并證明數(shù)列是等比數(shù)列;(2)求的通項公式及前n項和.20.(12分)在中,,,請再從條件①、條件②這兩個條件中選擇一個作為已知,然后解答下列問題.(1)求角的大??;(2)求的面積.條件①:;條件②:.21.(12分)在平面直角坐標系中,設(shè)橢圓()的離心率是e,定義直線為橢圓的“類準線”,已知橢圓C的“類準線”方程為,長軸長為8.(1)求橢圓C的標準方程;(2)O為坐標原點,A為橢圓C的右頂點,直線l交橢圓C于E,F(xiàn)兩不同點(點E,F(xiàn)與點A不重合),且滿足,若點P滿足,求直線的斜率的取值范圍.22.(10分)求證:(1)是上的偶函數(shù);(2)是上的奇函數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】因為隨機事件指的是在一定條件下,可能發(fā)生,也可能不發(fā)生的事件,只需逐一判斷4個事件哪一個符合這種情況即可【詳解】解:連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點這一事件可能發(fā)生也可能不發(fā)生,①是隨機事件某人買彩票中獎這一事件可能發(fā)生也可能不發(fā)生,②是隨機事件從集合,2,中任取兩個元素,它們的和必大于2,③是必然事件在標準大氣壓下,水加熱到時才會沸騰,④是不可能事件故隨機事件有2個,故選:B2、A【解析】根據(jù)向量垂直得到方程,求出的值.【詳解】由題意得:,解得:.故選:A3、C【解析】由題設(shè)寫出的中垂線,求其與的交點即得圓心坐標,再應(yīng)用兩點距離公式求半徑,即可得圓的方程.【詳解】因為點,在M上,所以圓心在的中垂線上由,解得,即圓心為,則半徑,所以M的方程為故選:C4、D【解析】根據(jù)等比數(shù)列的通項公式,前n項和的意義,可逐項分析求解.【詳解】因為等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,所以當時,由可得,故數(shù)列為增函數(shù),故B正確;由0<q<1,<0知,所以,故一定單調(diào)遞減,故A正確;因為當時,,,所以,即-,當時,,綜上,故C正確;若=,且k≠1,則,即,因為,故,故矛盾,所以D不正確.故選:D5、D【解析】利用分布計數(shù)原理求出所有的基本事件個數(shù),在求出點落在直線x+y=4上包含的基本事件個數(shù),利用古典概型的概率個數(shù)求出.解:連續(xù)拋擲兩次骰子出現(xiàn)的結(jié)果共有6×6=36,其中每個結(jié)果出現(xiàn)的機會都是等可能的,點P(m,n)在直線x+y=4上包含的結(jié)果有(1,3),(2,2),(3,1)共三個,所以點P(m,n)在直線x+y=4上的概率是3:36=1:12,故選D考點:古典概型點評:本題考查先判斷出各個結(jié)果是等可能事件,再利用古典概型的概率公式求概率,屬于基礎(chǔ)題6、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.7、C【解析】先由只有第4項的二項式系數(shù)最大,求出n=6;再由展開式的所有項的系數(shù)和為0,用賦值法求出,用通項公式求出的項的系數(shù).【詳解】∵在的展開式中,只有第4項的二項式系數(shù)最大,∴在的展開式有7項,即n=6;而展開式的所有項的系數(shù)和為0,令x=1,代入,即,所以.∴是展開式的通項公式為:,要求含的項,只需,解得,所以系數(shù)為.故選:C8、D【解析】由已知設(shè)拋物線方程為,由題意可得,求出,從而可得拋物線的方程【詳解】因為拋物線的準線方程為,所以設(shè)拋物線方程為,則,得,所以拋物線方程為,故選:D,9、D【解析】采用數(shù)形結(jié)合,根據(jù)邊長,結(jié)合正四面體的概念,計算出正三角形的面積,可得結(jié)果【詳解】如圖由正四面體的概念可知,其四個面均是全等的等邊三角形,由其棱長為1,所以,所以可知:正四面體的表面積為,故選:D10、D【解析】設(shè),由,得到四邊形是矩形,在中,利用勾股定理求得,再在中,利用勾股定理求解.【詳解】如圖所示:設(shè),則,,,因為,所以,則四邊形是矩形,在中,,即,解得,在中,,即,解得,故選:D11、C【解析】由等差數(shù)列的性質(zhì)可得,再應(yīng)用基本不等式求mn的最大值,注意等號成立條件.【詳解】由題設(shè)及等差數(shù)列的性質(zhì)知:,又m,,所以,即,當且僅當時等號成立.所以mn的最大值為.故選:C12、D【解析】根據(jù)四點共面的向量表示,可得結(jié)果.【詳解】由共面知,故選:【點睛】本題主要考查空間中四點共面的向量表示,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】化簡得出,由化簡后根據(jù)均值不等式建立不等式,求解二次不等式即可得解.【詳解】,由得:,(當且僅當時取等號),所以的最小值為6.故答案為:614、4【解析】根據(jù)分別是平面的法向量,且,則有求解.【詳解】因為分別是平面的法向量,且所以所以解得故答案為:4【點睛】本題主要考查空間向量垂直,還考查了運算求解的能力,屬于基礎(chǔ)題.15、相交【解析】求兩圓圓心距,并與半徑之和、半徑之差的絕對值比較即可.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,∵,∴兩圓相交.故答案為:相交.16、2【解析】第一步找出數(shù)列周期,第二步利用周期性求和.【詳解】,,,,,,可知數(shù)列{}是周期為4的周期數(shù)列,所以故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)具體見解析;(3)具體見解析.【解析】(1)由兩點間的距離公式求出距離,進而將式子化簡即可;(2)求出,進而討論兩種情況,然后結(jié)合基本不等式即可證明問題;(3)根據(jù)為雙曲線的焦點,結(jié)合雙曲線的圖形特征即可求得該雙曲線的相關(guān)性質(zhì).【小問1詳解】由題意,.【小問2詳解】設(shè),由(1),.若x>0,則,當且僅當時取“=”,則,,所以.若x<0,則,當且僅當時取“=”,則,,所以.綜上:,為常數(shù).【小問3詳解】易知函數(shù):為奇函數(shù),則其圖象關(guān)于原點對稱.由(2)可知,曲線為雙曲線,為雙曲線的焦點,則它關(guān)于直線對稱,還關(guān)于與垂直且過原點的直線對稱.,則,易得.綜上:雙曲線關(guān)于原點(0,0)對稱,且關(guān)于直線對稱.容易知道,直線是雙曲線C的漸近線.易知線段是雙曲線的實軸,將代入雙曲線解得頂點:.于是實軸長為焦距為,則離心率.18、(1)(2)存在,【解析】(1)由題意可得,,求得的值即可求解;(2)由(1)得,假設(shè)存在滿足條件的直線:,代入橢圓方程消去可得、,由中點坐標公式可得中點的坐標,由求得的值即可求解.小問1詳解】由題意可得,,,解得,,所以橢圓的方程為【小問2詳解】由(1)得,假設(shè)存在滿足條件的直線:,代入橢圓方程整理可得,設(shè),,則,,可得,則線段的中點坐標為,所以,則,解得:,所以存在直線,且直線的方程為19、(1),,證明見解析(2),【解析】(1)根據(jù)遞推關(guān)系求出,,對遞推公式變形,即可得證;(2)結(jié)合(1)求得通項公式,分組求和.【小問1詳解】因為,且所以,,∵,∴,∵,∴,且,∴數(shù)列是等比數(shù)列.【小問2詳解】由(1)可知是以為首項,以3為公比的等比數(shù)列,即,即;.20、(1)條件選擇見解析,(2)【解析】(1)選①,利用余弦定理求出的值,結(jié)合角的取值范圍,即可求得角的值;選②,利用余弦定理可求出的值,并利用余弦定理求出的值,結(jié)合角的取值范圍,即可求得角的值;(2)利用三角形的面積公式可求得的面積.【小問1詳解】解:選①,,由余弦定理可得,,所以,.選②,,整理可得,,解得,由余弦定理可得,,所以,.【小問2詳解】解:由三角形的面積公式可得.21、(1);(2).【解析】(1)由題意列關(guān)于,,的方程,聯(lián)立方程組求得,,,則橢圓方程可求;(2)分直線軸與直線l不垂直于x軸兩種情況討論,當直線l不垂直于x軸時,設(shè),,直線l:(,),聯(lián)立直線方程與橢圓方程,消元由,得到,再列出韋達定理,由則,解得,再由,求出的坐標,則,再利用基本不等式求出取值范圍;【詳解】解:(1)由題意得:,,又,聯(lián)立以上可得:,,,橢圓C的方程為.(2)由(1)得,當直線軸時,又,聯(lián)立得,解得或,所以,此時,直線的斜率為0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年綠色電力產(chǎn)供銷一體化的經(jīng)濟分析
- 2026年橋梁工程項目管理的最佳實踐
- 2026春招:小學教師面試題及答案
- 2026年橋梁抗震設(shè)計中的柔性結(jié)構(gòu)應(yīng)用
- 貼磚安全質(zhì)量培訓課件
- 貨運駕駛員安全培訓考核課件
- 貨車尾板安全培訓課件
- 醫(yī)療物聯(lián)網(wǎng)在臨床應(yīng)用中的實踐
- 貨梯安全使用培訓內(nèi)容課件
- 2026年漢中職業(yè)技術(shù)學院單招職業(yè)技能筆試模擬試題帶答案解析
- GB/T 8642-2025熱噴涂抗拉結(jié)合強度的測定
- 貴州省貴陽市2024-2025學年高一上學期期末監(jiān)測物理試卷(含解析)
- 2025河北省石家莊市公務(wù)員考試常識判斷專項練習題必考題
- 湖北省武漢市洪山區(qū)2024-2025學年五年級上學期期末數(shù)學試卷
- 2025年軍事理論知識考核試題及答案
- 臨床生物化學檢驗練習題庫(含答案)
- G -B- 15607-2023 涂裝作業(yè)安全規(guī)程 粉末靜電噴涂工藝安全(正式版)
- (正式版)SHT 3229-2024 石油化工鋼制空冷式熱交換器技術(shù)規(guī)范
- 2018年4月自考00265西方法律思想史試題及答案含解析
- 小紅書創(chuàng)業(yè)計劃書
- 青島版六年級上冊分數(shù)乘除混合運算練習400題及答案
評論
0/150
提交評論