2026屆四川省南充市高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2026屆四川省南充市高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2026屆四川省南充市高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2026屆四川省南充市高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2026屆四川省南充市高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆四川省南充市高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)實系數(shù)一元二次方程在復(fù)數(shù)集C內(nèi)的根為、,則由,可得.類比上述方法:設(shè)實系數(shù)一元三次方程在復(fù)數(shù)集C內(nèi)的根為,則的值為A.﹣2 B.0C.2 D.42.如圖,和分別是雙曲線的兩個焦點,和是以為圓心,以為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則雙曲線的離心率為()A. B.C. D.3.已知等比數(shù)列的前項和為,若公比,則=()A. B.C. D.4.給出下列判斷,其中正確的是()A.三點唯一確定一個平面B.一條直線和一個點唯一確定一個平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)5.已知雙曲線:()的離心率為,則的漸近線方程為()A. B.C. D.6.設(shè)點P是雙曲線,與圓在第一象限的交點,、分別是雙曲線的左、右焦點,且,則此雙曲線的離心率為()A. B.C. D.37.如圖所示,某空間幾何體的三視圖是3個全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.8.已知橢圓的短軸長為8,且一個焦點是圓的圓心,則該橢圓的左頂點為()A B.C. D.9.若拋物線上一點到焦點的距離為5,則點的坐標(biāo)為()A. B.C. D.10.已知函數(shù)有兩個極值點m,n,且,則的最大值為()A. B.C. D.11.若雙曲線的漸近線方程為,則的值為()A.2 B.3C.4 D.612.設(shè)是等差數(shù)列,是其公差,是其前n項的和.若,,則下列結(jié)論不正確的是()A. B.C. D.與均為的最大值二、填空題:本題共4小題,每小題5分,共20分。13.在一村莊正西方向處有一臺風(fēng)中心,它正向東北方向移動,移動速度的大小為,距臺風(fēng)中心以內(nèi)的地區(qū)將受到影響,若臺風(fēng)中心的這種移動趨勢不變,則村莊所在地大約有_______小時會受到臺風(fēng)的影響.(參考數(shù)據(jù):)14.曲線在點處的切線方程是______.15.函數(shù)y=x3+ax2+bx+a2在x=1處有極值10,則a=________.16.已知等比數(shù)列的各項均為實數(shù),其前項和為,若,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在空間直角坐標(biāo)系中有長方體,且,,點E在棱AB上移動.(1)證明:;(2)當(dāng)E為AB的中點時,求直線AC與平面所成角的正弦值.18.(12分)數(shù)字人民幣是由央行發(fā)行的法定數(shù)字貨幣,它由指定運營機構(gòu)參與運營并向公眾兌換,與紙鈔和硬幣等價.截至2021年6月30日,數(shù)字人民幣試點場景已超132萬個,覆蓋生活繳費、餐飲服務(wù)、交通出行、購物消費、政務(wù)服務(wù)等領(lǐng)域.為了進(jìn)一步了解普通大眾對數(shù)字人民幣的感知以及接受情況,某機構(gòu)進(jìn)行了一次問卷調(diào)查,結(jié)果如下:學(xué)歷小學(xué)及以下初中高中大學(xué)??拼髮W(xué)本科碩士研究生及以上不了解數(shù)字人民幣35358055646了解數(shù)字人民幣406015011014025(1)如果將高中及高中以下的學(xué)歷稱為“低學(xué)歷”,大學(xué)專科及以上學(xué)歷稱為“高學(xué)歷”,根據(jù)所給數(shù)據(jù),完成列聯(lián)表.低學(xué)歷高學(xué)歷合計不了解數(shù)字人民幣了解數(shù)字人民幣合計(2)若從低學(xué)歷的被調(diào)查者中隨機抽取2人進(jìn)行進(jìn)一步調(diào)查,求被選中的2人中至少有1人對數(shù)字人民幣不了解的概率:(3)根據(jù)列聯(lián)表,判斷是否有的把握認(rèn)為“是否了解數(shù)字人民幣”與“學(xué)歷高低”有關(guān)?0.0500.0100.001k3.8416.63510.828附:.19.(12分)已知拋物線上的點P(3,c)),到焦點F的距離為6(1)求拋物線C的方程;(2)過點Q(2,1)和焦點F作直線l交拋物線C于A,B兩點,求△PAB的面積20.(12分)已知項數(shù)為的數(shù)列是各項均為非負(fù)實數(shù)的遞增數(shù)列.若對任意的,(),與至少有一個是數(shù)列中的項,則稱數(shù)列具有性質(zhì).(1)判斷數(shù)列,,,是否具有性質(zhì),并說明理由;(2)設(shè)數(shù)列具有性質(zhì),求證:;(3)若數(shù)列具有性質(zhì),且不是等差數(shù)列,求項數(shù)的所有可能取值.21.(12分)已知橢圓的離心率為,且經(jīng)過點.(1)求橢圓的方程;(2)經(jīng)過點的直線與橢圓交于不同的兩點,,為坐標(biāo)原點,若的面積為,求直線的方程.22.(10分)已知直線,直線,直線(1)若與的傾斜角互補,求m的值;(2)當(dāng)m為何值時,三條直線能圍成一個直角三角形

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】用類比推理得到,再用待定系數(shù)法得到,,再根據(jù)求解.【詳解】,由對應(yīng)系數(shù)相等得:,.故選:A.【點睛】本題主要考查合情推理以及待定系數(shù)法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理的能力,屬于中檔題.2、D【解析】解:,設(shè)F1F2=2c,∵△F2AB是等邊三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故選D3、A【解析】根據(jù)題意,由等比數(shù)列的通項公式與前項和公式直接計算即可.【詳解】由已知可得.故選:A.4、C【解析】根據(jù)確定平面的條件可對每一個選項進(jìn)行判斷.【詳解】對A,如果三點在同一條直線上,則不能確定一個平面,故A錯誤;對B,如果這個點在這條直線上,就不能確定一個平面,故B錯誤;對C,兩條平行直線確定一個平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對D,空間兩兩相交的三條直線可確定一個平面,也可確定三個平面,故D錯誤.故選:C5、A【解析】先根據(jù)雙曲線的離心率得到,然后由,得,即為所求的漸近線方程,進(jìn)而可得結(jié)果【詳解】∵雙曲線的離心率,∴又由,得,即雙曲線()的漸近線方程為,∴雙曲線的漸近線方程為故選:A6、C【解析】根據(jù)幾何關(guān)系得到是直角三角形,然后由雙曲線的定義及勾股定理可求解.【詳解】點到原點的距離為,又因為在中,,所以是直角三角形,即.由雙曲線定義知,又因為,所以.在中,由勾股定理得,化簡得,所以.故選:C.7、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A8、D【解析】根據(jù)橢圓的一個焦點是圓的圓心,求得c,再根據(jù)橢圓的短軸長為8求得b即可.【詳解】圓的圓心是,所以橢圓的一個焦點是,即c=3,又橢圓的短軸長為8,即b=4,所以橢圓長半軸長為,所以橢圓的左頂點為,故選:D9、C【解析】設(shè),由拋物線的方程可得準(zhǔn)線方程為,由拋物線的性質(zhì)到焦點的距離等于到準(zhǔn)線的距離,求出,解出縱坐標(biāo),進(jìn)而求出【詳解】由題意可得,解得,代入拋物線的方程,解得,所以的坐標(biāo),故選:C.10、C【解析】對求導(dǎo)得,得到m,n是兩個根,由根與系數(shù)的關(guān)系可得m,n的關(guān)系,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求單調(diào)性,進(jìn)而得最值.【詳解】由得:m,n是兩個根,由根與系數(shù)的關(guān)系得:,故,令記,則,故在上單調(diào)遞減.故選:C11、A【解析】根據(jù)雙曲線方程確定焦點位置,再根據(jù)漸近線方程為求解.【詳解】因為雙曲線所以焦點在x軸上,又因為漸近線方程為,所以,所以.故選:A【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了理解辨析的能力,屬于基礎(chǔ)題.12、C【解析】由已知條件可以得出,,,即可得公差,再利用等差數(shù)列的性質(zhì)以及前n項的和的性質(zhì)可判斷每個選項的正誤,進(jìn)而可得正確選項.【詳解】由可得,由可得,故選項B正確;由可得,因為公差,故選項A正確,,所以,故選項C不正確;由于是等差數(shù)列,公差,,,,所以都是的最大值,故選項D正確;所以選項C不正確,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】結(jié)合勾股定理求得正確答案.【詳解】如圖,設(shè)村莊為A,開始臺風(fēng)中心的位置為B,臺風(fēng)路徑為直線,因為點A到直線的距離為,∴村莊所在地受到臺風(fēng)影響的時間約為:(小時).故答案為:本卷包括必考題和選考題兩部分.第17題~第21題為必考題,每個試題考生都必須作答第22題~第23題為選考題,考生根據(jù)要求作答14、x-y-2=0【解析】解:因為曲線在點(1,-1)處的切線方程是由點斜式可知為x-y-2=015、4【解析】∵y′=3x2+2ax+b,∴或當(dāng)a=-3,b=3時,y′=3x2-6x+3=3(x-1)2≥0恒成立,故舍去.所以a=416、1【解析】分公比和兩種情況討論,結(jié)合,,即可得出答案.【詳解】解:設(shè)等比數(shù)列的公比為,當(dāng),由,,不合題意,當(dāng),由,得,綜上所述.故答案為:1.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)設(shè),求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直線與平面所成角的正弦值【小問1詳解】證明:設(shè),,,,;【小問2詳解】當(dāng)為的中點時,,,設(shè)平面的法向量,則,取,得,設(shè)直線與平面所成角為,則直線與平面所成角的正弦值為:18、(1)列聯(lián)表答案見解析;(2);(3)沒有的把握認(rèn)為“是否了解數(shù)字人民幣”與“學(xué)歷高低”有關(guān).【解析】(1)根據(jù)給定表中數(shù)據(jù)列出列聯(lián)表作答.(2)利用給定條件結(jié)合古典概率公式計算作答.(3)利用(1)中信息求出的觀測值,再與臨界值表比對作答.【小問1詳解】列聯(lián)表如下:低學(xué)歷高學(xué)歷合計不了解數(shù)字人民幣150125275了解數(shù)字人民幣250275525合計400400800【小問2詳解】由(1)知,被調(diào)查者中低學(xué)歷的有400,其中不了解數(shù)字人民幣的有150,從400人中任取2人有個基本事件,它們等可能,被選中的2人中至少有1人對數(shù)字人民幣不了解的事件A有個基本事件,所以被選中的2人中至少有1人對數(shù)字人民幣不了解的概率.【小問3詳解】由(1)知,的觀測值為,所以沒有的把握認(rèn)為“是否了解數(shù)字人民幣”與“學(xué)歷高低”有關(guān).19、(1)(2)【解析】(1)根據(jù)拋物線的焦半徑公式求得,即可得到拋物線方程;(2)寫出直線方程,聯(lián)立拋物線方程,進(jìn)而求得弦長|AB|,再求出點P到直線的距離,即可求得答案.【小問1詳解】由拋物線的焦半徑公式可知:,即得,故拋物線方程為:;【小問2詳解】點Q(2,1)和焦點作直線l,則l方程為,即,聯(lián)立拋物線方程:,整理得,設(shè),則,故,點P(3,c)在拋物線上,則,點P到直線l的距離為,故△PAB的面積為.20、(1)數(shù)列,,,不具有性質(zhì);(2)證明見解析;(3)可能取值只有.【解析】(1)由數(shù)列具有性質(zhì)的定義,只需判斷存在與都不是數(shù)列中的項即可.(2)由性質(zhì)知:、,結(jié)合非負(fù)遞增性有,再由時,必有,進(jìn)而可得,,,,,應(yīng)用累加法即可證結(jié)論.(3)討論、、,結(jié)合性質(zhì)、等差數(shù)列的性質(zhì)判斷是否存在符合題設(shè)性質(zhì),進(jìn)而確定的可能取值.【小問1詳解】數(shù)列,,,不具有性質(zhì).因為,,和均不是數(shù)列,,,中的項,所以數(shù)列,,,不具有性質(zhì).【小問2詳解】記數(shù)列的各項組成的集合為,又,由數(shù)列具有性質(zhì),,所以,即,所以.設(shè),因為,所以.又,則,,,,.將上面的式子相加得:.所以.【小問3詳解】(i)當(dāng)時,由(2)知,,,這與數(shù)列不是等差數(shù)列矛盾,不合題意.(ii)當(dāng)時,存在數(shù)列,,,,符合題意,故可取.(iii)當(dāng)時,由(2)知,.①當(dāng)時,,所以,.又,,∴,,,,即.由,,得:,,∴.②由①②兩式相減得:,這與數(shù)列不是等差數(shù)列矛盾,不合題意.綜上,滿足題設(shè)的的可能取值只有.【點睛】關(guān)鍵點點睛:第二問,由可知,并應(yīng)用累加法求證結(jié)論;第三問,討論k的取值,結(jié)合的性質(zhì),由性質(zhì)、等差數(shù)列的性質(zhì)判斷不同k的取值情況下數(shù)列的存在性即可.21、(1);(2)或.【解析】(1)由離心率公式、將點代入橢圓方程得出橢圓的方程;(2)聯(lián)立橢圓和直線的方程,由判別式得出的范圍,再由韋達(dá)定理結(jié)合三角形面積公式得出,求出的值得出直線的方程.【詳解】解:(1)因為橢圓的離心率為,所以.①又因為橢圓經(jīng)過點,所以有.②聯(lián)立①②可得,,,所以橢圓的方程為.(2)由題意可知,直線的斜率存在,設(shè)直線的方程為.由消去整理得,.因為直線與橢圓交于不同兩點,所以,即,所以設(shè),,則,.由題意得,面積,即.因為的面積為,所以,即.化簡得,,即,解得或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論