2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)卷(附答案)_第1頁(yè)
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)卷(附答案)_第2頁(yè)
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)卷(附答案)_第3頁(yè)
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)卷(附答案)_第4頁(yè)
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)卷(附答案)_第5頁(yè)
已閱讀5頁(yè),還剩30頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)卷(附答案)一、解答題1.如圖,在網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,正方形的頂點(diǎn)都在網(wǎng)格的格點(diǎn)上.(1)求正方形的面積和邊長(zhǎng);(2)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,寫(xiě)出正方形四個(gè)頂點(diǎn)的坐標(biāo).2.已知足球場(chǎng)的形狀是一個(gè)長(zhǎng)方形,而國(guó)際標(biāo)準(zhǔn)球場(chǎng)的長(zhǎng)度和寬度(單位:米)的取值范圍分別是,.若某球場(chǎng)的寬與長(zhǎng)的比是1:1.5,面積為7350平方米,請(qǐng)判斷該球場(chǎng)是否符合國(guó)際標(biāo)準(zhǔn)球場(chǎng)的長(zhǎng)寬標(biāo)準(zhǔn),并說(shuō)明理由.3.如圖,8塊相同的小長(zhǎng)方形地磚拼成一個(gè)大長(zhǎng)方形,(1)每塊小長(zhǎng)方形地磚的長(zhǎng)和寬分別是多少?(要求列方程組進(jìn)行解答)(2)小明想用一塊面積為7平方米的正方形桌布,沿著邊的方向裁剪出一塊新的長(zhǎng)方形桌布,用來(lái)蓋住這塊長(zhǎng)方形木桌,你幫小明算一算,他能剪出符合要求的桌布嗎?4.如圖,陰影部分(正方形)的四個(gè)頂點(diǎn)在5×5的網(wǎng)格格點(diǎn)上.(1)請(qǐng)求出圖中陰影部分(正方形)的面積和邊長(zhǎng)(2)若邊長(zhǎng)的整數(shù)部分為,小數(shù)部分為,求的值.5.小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長(zhǎng)方形紙片.(1)請(qǐng)幫小麗設(shè)計(jì)一種可行的裁剪方案;(2)若使長(zhǎng)方形的長(zhǎng)寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請(qǐng)幫小麗設(shè)計(jì)一種裁剪方案,若不能,請(qǐng)簡(jiǎn)要說(shuō)明理由.二、解答題6.已知直線(xiàn)AB//CD,點(diǎn)P、Q分別在AB、CD上,如圖所示,射線(xiàn)PB按逆時(shí)針?lè)较蛞悦棵?2°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線(xiàn)QC按逆時(shí)針?lè)较蛎棵?°旋轉(zhuǎn)至QD停止,此時(shí)射線(xiàn)PB也停止旋轉(zhuǎn).(1)若射線(xiàn)PB、QC同時(shí)開(kāi)始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時(shí)間10秒時(shí),PB'與QC'的位置關(guān)系為;(2)若射線(xiàn)QC先轉(zhuǎn)15秒,射線(xiàn)PB才開(kāi)始轉(zhuǎn)動(dòng),當(dāng)射線(xiàn)PB旋轉(zhuǎn)的時(shí)間為多少秒時(shí),PB′//QC′.7.已知:直線(xiàn)AB∥CD,直線(xiàn)MN分別交AB、CD于點(diǎn)E、F,作射線(xiàn)EG平分∠BEF交CD于G,過(guò)點(diǎn)F作FH⊥MN交EG于H.(1)當(dāng)點(diǎn)H在線(xiàn)段EG上時(shí),如圖1①當(dāng)∠BEG=時(shí),則∠HFG=.②猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.(2)當(dāng)點(diǎn)H在線(xiàn)段EG的延長(zhǎng)線(xiàn)上時(shí),請(qǐng)先在圖2中補(bǔ)全圖形,猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.8.已知,AB∥CD,點(diǎn)E在CD上,點(diǎn)G,F(xiàn)在AB上,點(diǎn)H在AB,CD之間,連接FE,EH,HG,∠AGH=∠FED,F(xiàn)E⊥HE,垂足為E.(1)如圖1,求證:HG⊥HE;(2)如圖2,GM平分∠HGB,EM平分∠HED,GM,EM交于點(diǎn)M,求證:∠GHE=2∠GME;(3)如圖3,在(2)的條件下,F(xiàn)K平分∠AFE交CD于點(diǎn)K,若∠KFE:∠MGH=13:5,求∠HED的度數(shù).9.已知:如圖(1)直線(xiàn)AB、CD被直線(xiàn)MN所截,∠1=∠2.(1)求證:AB//CD;(2)如圖(2),點(diǎn)E在AB,CD之間的直線(xiàn)MN上,P、Q分別在直線(xiàn)AB、CD上,連接PE、EQ,PF平分∠BPE,QF平分∠EQD,則∠PEQ和∠PFQ之間有什么數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出你的結(jié)論;(3)如圖(3),在(2)的條件下,過(guò)P點(diǎn)作PH//EQ交CD于點(diǎn)H,連接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度數(shù).10.已知AB∥CD,線(xiàn)段EF分別與AB,CD相交于點(diǎn)E,F(xiàn).(1)請(qǐng)?jiān)跈M線(xiàn)上填上合適的內(nèi)容,完成下面的解答:如圖1,當(dāng)點(diǎn)P在線(xiàn)段EF上時(shí),已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過(guò)點(diǎn)P作直線(xiàn)PH∥AB,所以∠A=∠APH,依據(jù)是;因?yàn)锳B∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當(dāng)點(diǎn)P,Q在線(xiàn)段EF上移動(dòng)時(shí)(不包括E,F(xiàn)兩點(diǎn)):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請(qǐng)說(shuō)明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請(qǐng)直接寫(xiě)出∠M,∠A與∠C的數(shù)量關(guān)系.三、解答題11.如圖,以直角三角形的直角頂點(diǎn)為原點(diǎn),以、所在直線(xiàn)為軸和軸建立平面直角坐標(biāo)系,點(diǎn),滿(mǎn)足.(1)點(diǎn)的坐標(biāo)為_(kāi)_____;點(diǎn)的坐標(biāo)為_(kāi)_____.(2)如圖1,已知坐標(biāo)軸上有兩動(dòng)點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)出發(fā)沿軸負(fù)方向以1個(gè)單位長(zhǎng)度每秒的速度勻速移動(dòng),點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度每秒的速度沿軸正方向移動(dòng),點(diǎn)到達(dá)點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.的中點(diǎn)的坐標(biāo)是,設(shè)運(yùn)動(dòng)時(shí)間為.問(wèn):是否存在這樣的,使?若存在,請(qǐng)求出的值:若不存在,請(qǐng)說(shuō)明理由.(3)如圖2,過(guò)作,作交于點(diǎn),點(diǎn)是線(xiàn)段上一動(dòng)點(diǎn),連交于點(diǎn),當(dāng)點(diǎn)在線(xiàn)段上運(yùn)動(dòng)的過(guò)程中,的值是否會(huì)發(fā)生變化?若不變,請(qǐng)求出它的值:若變化,請(qǐng)說(shuō)明理由.12.如圖1,點(diǎn)O在上,,射線(xiàn)交于點(diǎn)C,已知m,n滿(mǎn)足:.(1)試說(shuō)明//的理由;(2)如圖2,平分,平分,直線(xiàn)、交于點(diǎn)E,則______;(3)若將繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),其余條件都不變,在旋轉(zhuǎn)過(guò)程中,的度數(shù)是否發(fā)生變化?請(qǐng)說(shuō)明你的結(jié)論.13.(1)學(xué)習(xí)了平行線(xiàn)以后,香橙同學(xué)想出了過(guò)一點(diǎn)畫(huà)一條直線(xiàn)的平行線(xiàn)的新方法,她是通過(guò)折紙做的,過(guò)程如(圖1).①請(qǐng)你仿照以上過(guò)程,在圖2中畫(huà)出一條直線(xiàn)b,使直線(xiàn)b經(jīng)過(guò)點(diǎn)P,且,要求保留折紙痕跡,畫(huà)出所用到的直線(xiàn),指明結(jié)果.無(wú)需寫(xiě)畫(huà)法:②在(1)中的步驟(b)中,折紙實(shí)際上是在尋找過(guò)點(diǎn)P的直線(xiàn)a的線(xiàn).(2)已知,如圖3,,BE平分,CF平分.求證:(寫(xiě)出每步的依據(jù)).14.已知,直角的邊與直線(xiàn)a分別相交于O、G兩點(diǎn),與直線(xiàn)b分別交于E、F點(diǎn),.(1)將直角如圖1位置擺放,如果,則______;(2)將直角如圖2位置擺放,N為AC上一點(diǎn),,請(qǐng)寫(xiě)出與之間的等量關(guān)系,并說(shuō)明理由.(3)將直角如圖3位置擺放,若,延長(zhǎng)AC交直線(xiàn)b于點(diǎn)Q,點(diǎn)P是射線(xiàn)GF上一動(dòng)點(diǎn),探究,與的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論.15.如圖1,,在、內(nèi)有一條折線(xiàn).(1)求證:;(2)在圖2中,畫(huà)的平分線(xiàn)與的平分線(xiàn),兩條角平分線(xiàn)交于點(diǎn),請(qǐng)你補(bǔ)全圖形,試探索與之間的關(guān)系,并證明你的結(jié)論;(3)在(2)的條件下,已知和均為鈍角,點(diǎn)在直線(xiàn)、之間,且滿(mǎn)足,,(其中為常數(shù)且),直接寫(xiě)出與的數(shù)量關(guān)系.四、解答題16.如圖①,平分,⊥,∠B=450,∠C=730.(1)求的度數(shù);(2)如圖②,若把“⊥”變成“點(diǎn)F在DA的延長(zhǎng)線(xiàn)上,”,其它條件不變,求的度數(shù);(3)如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請(qǐng)說(shuō)明理由.17.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線(xiàn)M1O與∠CMnMn-1的角平分線(xiàn)MnO交于點(diǎn)O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)18.操作示例:如圖1,在△ABC中,AD為BC邊上的中線(xiàn),△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問(wèn)題:在圖2中,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點(diǎn)D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關(guān)系為.(2)如圖4,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,連接BE、CD交于點(diǎn)O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.19.直線(xiàn)MN與直線(xiàn)PQ垂直相交于O,點(diǎn)A在射線(xiàn)OP上運(yùn)動(dòng),點(diǎn)B在射線(xiàn)OM上運(yùn)動(dòng),A、B不與點(diǎn)O重合,如圖1,已知AC、BC分別是∠BAP和∠ABM角的平分線(xiàn),(1)點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠ACB的大小是否發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出∠ACB的大小.(2)如圖2,將△ABC沿直線(xiàn)AB折疊,若點(diǎn)C落在直線(xiàn)PQ上,則∠ABO=________,如圖3,將△ABC沿直線(xiàn)AB折疊,若點(diǎn)C落在直線(xiàn)MN上,則∠ABO=________(3)如圖4,延長(zhǎng)BA至G,已知∠BAO、∠OAG的角平分線(xiàn)與∠BOQ的角平分線(xiàn)及其反向延長(zhǎng)線(xiàn)交于E、F,則∠EAF=;在△AEF中,如果有一個(gè)角是另一個(gè)角的倍,求∠ABO的度數(shù).20.在中,,,點(diǎn)在直線(xiàn)上運(yùn)動(dòng)(不與點(diǎn)、重合),點(diǎn)在射線(xiàn)上運(yùn)動(dòng),且,設(shè).(1)如圖①,當(dāng)點(diǎn)在邊上,且時(shí),則__________,__________;(2)如圖②,當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的左側(cè)時(shí),其他條件不變,請(qǐng)猜想和的數(shù)量關(guān)系,并說(shuō)明理由;(3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的右側(cè)時(shí),其他條件不變,和還滿(mǎn)足(2)中的數(shù)量關(guān)系嗎?請(qǐng)?jiān)趫D③中畫(huà)出圖形,并給予證明.(畫(huà)圖痕跡用黑色簽字筆加粗加黑)【參考答案】一、解答題1.(1)面積為29,邊長(zhǎng)為;(2),,,,圖見(jiàn)解析.【分析】(1)面積等于一個(gè)大正方形的面積減去四個(gè)直角三角形的面積,再利用算術(shù)平方根定義求得邊長(zhǎng)即可;(2)建立適當(dāng)?shù)淖鴺?biāo)系后寫(xiě)出四個(gè)頂點(diǎn)的坐標(biāo)解析:(1)面積為29,邊長(zhǎng)為;(2),,,,圖見(jiàn)解析.【分析】(1)面積等于一個(gè)大正方形的面積減去四個(gè)直角三角形的面積,再利用算術(shù)平方根定義求得邊長(zhǎng)即可;(2)建立適當(dāng)?shù)淖鴺?biāo)系后寫(xiě)出四個(gè)頂點(diǎn)的坐標(biāo)即可.【詳解】解:(1)正方形的面積,正方形邊長(zhǎng)為;(2)建立如圖平面直角坐標(biāo)系,則,,,.【點(diǎn)睛】本題考查了算術(shù)平方根及坐標(biāo)與圖形的性質(zhì)及割補(bǔ)法求面積,從圖形中整理出直角三角形是進(jìn)一步解題的關(guān)鍵.2.符合,理由見(jiàn)解析【分析】根據(jù)寬與長(zhǎng)的比是1:1.5,面積為7350平方米,列方程求出長(zhǎng)和寬,比較得出答案.【詳解】解:符合,理由如下:設(shè)寬為b米,則長(zhǎng)為1.5b米,由題意得,1.5b×b解析:符合,理由見(jiàn)解析【分析】根據(jù)寬與長(zhǎng)的比是1:1.5,面積為7350平方米,列方程求出長(zhǎng)和寬,比較得出答案.【詳解】解:符合,理由如下:設(shè)寬為b米,則長(zhǎng)為1.5b米,由題意得,1.5b×b=7350,∴b=70,或b=-70(舍去),即寬為70米,長(zhǎng)為1.5×70=105米,∵100≤105≤110,64≤70≤75,∴符合國(guó)際標(biāo)準(zhǔn)球場(chǎng)的長(zhǎng)寬標(biāo)準(zhǔn).【點(diǎn)睛】本題考查算術(shù)平方根的意義,列出方程求出長(zhǎng)和寬是得出正確答案的前提.3.(1)長(zhǎng)是1.5m,寬是0.5m.;(2)不能.【解析】【分析】(1)設(shè)每塊小長(zhǎng)方形地磚的長(zhǎng)為xm,寬為ym,列方程組求解即可;(2)把正方形的邊長(zhǎng)與大長(zhǎng)方形的長(zhǎng)比較即可.【詳解】解:解析:(1)長(zhǎng)是1.5m,寬是0.5m.;(2)不能.【解析】【分析】(1)設(shè)每塊小長(zhǎng)方形地磚的長(zhǎng)為xm,寬為ym,列方程組求解即可;(2)把正方形的邊長(zhǎng)與大長(zhǎng)方形的長(zhǎng)比較即可.【詳解】解:(1)設(shè)每塊小長(zhǎng)方形地磚的長(zhǎng)為xm,寬為ym,由題意得:

,

解得:,

∴長(zhǎng)是1.5m,寬是0.5m.(2)∵正方形的面積為7平方米,∴正方形的邊長(zhǎng)是米,∵<3,∴他不能剪出符合要求的桌布.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,算術(shù)平方根的應(yīng)用,找出等量關(guān)系列出方程組是解(1)的關(guān)鍵,求出正方形的邊長(zhǎng)是解(2)的關(guān)鍵.4.(1)S=13,邊長(zhǎng)為;(2)6【詳解】分析:(1)、利用正方形的面積減去四個(gè)直角三角形的面積得出陰影部分的面積,從而得出正方形的邊長(zhǎng);(2)、根據(jù)無(wú)理數(shù)的估算得出a和b的值,然后得出答案.解析:(1)S=13,邊長(zhǎng)為;(2)6【詳解】分析:(1)、利用正方形的面積減去四個(gè)直角三角形的面積得出陰影部分的面積,從而得出正方形的邊長(zhǎng);(2)、根據(jù)無(wú)理數(shù)的估算得出a和b的值,然后得出答案.詳解:解:(1)S=25-12=13,邊長(zhǎng)為,(2)a=3,b=-3原式=9+-3-=6.點(diǎn)睛:本題主要考查的就是無(wú)理數(shù)的估算,屬于中等難度的題型.解決這個(gè)問(wèn)題的關(guān)鍵就是根據(jù)正方形的面積得出邊長(zhǎng).5.(1)可以以正方形一邊為長(zhǎng)方形的長(zhǎng),在其鄰邊上截取長(zhǎng)為15cm的線(xiàn)段作為寬即可裁出符合要求的長(zhǎng)方形;(2)不能,理由見(jiàn)解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長(zhǎng)為acm∴解析:(1)可以以正方形一邊為長(zhǎng)方形的長(zhǎng),在其鄰邊上截取長(zhǎng)為15cm的線(xiàn)段作為寬即可裁出符合要求的長(zhǎng)方形;(2)不能,理由見(jiàn)解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長(zhǎng)為acm∴a2=400又∵a>0∴a=20又∵要裁出的長(zhǎng)方形面積為300cm2∴若以原正方形紙片的邊長(zhǎng)為長(zhǎng)方形的長(zhǎng),則長(zhǎng)方形的寬為:300÷20=15(cm)∴可以以正方形一邊為長(zhǎng)方形的長(zhǎng),在其鄰邊上截取長(zhǎng)為15cm的線(xiàn)段作為寬即可裁出符合要求的長(zhǎng)方形(2)∵長(zhǎng)方形紙片的長(zhǎng)寬之比為3:2∴設(shè)長(zhǎng)方形紙片的長(zhǎng)為3xcm,則寬為2xcm∴6x2=300∴x2=50又∵x>0∴x=∴長(zhǎng)方形紙片的長(zhǎng)為又∵>202即:>20∴小麗不能用這塊紙片裁出符合要求的紙片二、解答題6.(1)PB′⊥QC′;(2)當(dāng)射線(xiàn)PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時(shí),∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過(guò)O作OE∥AB,根解析:(1)PB′⊥QC′;(2)當(dāng)射線(xiàn)PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時(shí),∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過(guò)O作OE∥AB,根據(jù)平行線(xiàn)的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時(shí),②當(dāng)15<t≤30時(shí),③當(dāng)30<t<45時(shí),根據(jù)平行線(xiàn)的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時(shí)間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時(shí)間30秒時(shí),由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過(guò)O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時(shí),如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時(shí),如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時(shí),如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線(xiàn)PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′.【點(diǎn)睛】本題主要考查了平行線(xiàn)的性質(zhì),第(1)題關(guān)鍵是作平行線(xiàn),第(2)題關(guān)鍵是分情況討論,運(yùn)用方程思想解決幾何問(wèn)題.7.(1)①18°;②2∠BEG+∠HFG=90°,證明見(jiàn)解析;(2)2∠BEG-∠HFG=90°證明見(jiàn)解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結(jié)論.②利用平行線(xiàn)的性質(zhì)證明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,證明見(jiàn)解析;(2)2∠BEG-∠HFG=90°證明見(jiàn)解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結(jié)論.②利用平行線(xiàn)的性質(zhì)證明即可.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.利用平行線(xiàn)的性質(zhì)證明即可.【詳解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案為:18°.②結(jié)論:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【點(diǎn)睛】本題考查平行線(xiàn)的性質(zhì),角平分線(xiàn)的定義等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.8.(1)見(jiàn)解析;(2)見(jiàn)解析;(3)40°【分析】(1)根據(jù)平行線(xiàn)的性質(zhì)和判定解答即可;(2)過(guò)點(diǎn)H作HP∥AB,根據(jù)平行線(xiàn)的性質(zhì)解答即可;(3)過(guò)點(diǎn)H作HP∥AB,根據(jù)平行線(xiàn)的性質(zhì)解答即可.解析:(1)見(jiàn)解析;(2)見(jiàn)解析;(3)40°【分析】(1)根據(jù)平行線(xiàn)的性質(zhì)和判定解答即可;(2)過(guò)點(diǎn)H作HP∥AB,根據(jù)平行線(xiàn)的性質(zhì)解答即可;(3)過(guò)點(diǎn)H作HP∥AB,根據(jù)平行線(xiàn)的性質(zhì)解答即可.【詳解】證明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)過(guò)點(diǎn)M作MQ∥AB,∵AB∥CD,∴MQ∥CD,過(guò)點(diǎn)H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=∠HED,∵M(jìn)Q∥AB,∴∠BGM=∠GMQ,∵M(jìn)Q∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)過(guò)點(diǎn)M作MQ∥AB,過(guò)點(diǎn)H作HP∥AB,由∠KFE:∠MGH=13:5,設(shè)∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=∠AFE,即,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【點(diǎn)睛】本題考查了平行線(xiàn)的判定與性質(zhì),熟練掌握平行線(xiàn)的判定與性質(zhì)定理以及靈活構(gòu)造平行線(xiàn)是解題的關(guān)鍵.9.(1)見(jiàn)解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線(xiàn)解析:(1)見(jiàn)解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線(xiàn)的性質(zhì)即可證明;(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,想辦法構(gòu)建方程即可解決問(wèn)題;【詳解】(1)如圖1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)結(jié)論:如圖2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可證:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y(tǒng)+z﹣x,∵PQ平分∠EPH,∴Z=y(tǒng)+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【點(diǎn)睛】本題考查了平行線(xiàn)的判定與性質(zhì),角平分線(xiàn)的定義等知識(shí).(2)中能正確作出輔助線(xiàn)是解題的關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題的關(guān)鍵.10.(1)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;平行于同一條直線(xiàn)的兩條直線(xiàn)平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見(jiàn)解答過(guò)程;②3∠PMQ+∠A+∠C=360°.解析:(1)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;平行于同一條直線(xiàn)的兩條直線(xiàn)平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見(jiàn)解答過(guò)程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線(xiàn)的判定與性質(zhì)即可完成填空;(2)結(jié)合(1)的輔助線(xiàn)方法即可完成證明;(3)結(jié)合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關(guān)系.【詳解】解:過(guò)點(diǎn)P作直線(xiàn)PH∥AB,所以∠A=∠APH,依據(jù)是兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;因?yàn)锳B∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線(xiàn)的兩條直線(xiàn)平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;平行于同一條直線(xiàn)的兩條直線(xiàn)平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過(guò)點(diǎn)P作直線(xiàn)PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過(guò)點(diǎn)P作直線(xiàn)PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點(diǎn)睛】考核知識(shí)點(diǎn):平行線(xiàn)的判定和性質(zhì).熟練運(yùn)用平行線(xiàn)性質(zhì)和判定,添加適當(dāng)輔助線(xiàn)是關(guān)鍵.三、解答題11.(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對(duì)值和算術(shù)平方根的非負(fù)性,求得a,b的值,再利用中點(diǎn)坐標(biāo)公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對(duì)值和算術(shù)平方根的非負(fù)性,求得a,b的值,再利用中點(diǎn)坐標(biāo)公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列出關(guān)于t的方程,求得t的值即可;(3)過(guò)H點(diǎn)作AC的平行線(xiàn),交x軸于P,先判定OG∥AC,再根據(jù)角的和差關(guān)系以及平行線(xiàn)的性質(zhì),得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入進(jìn)行計(jì)算即可.【詳解】解:(1)∵+|b-2|=0,∴a-2b=0,b-2=0,解得a=4,b=2,∴A(0,4),C(2,0).(2)存在,理由:如圖1中,D(1,2),由條件可知:P點(diǎn)從C點(diǎn)運(yùn)動(dòng)到O點(diǎn)時(shí)間為2秒,Q點(diǎn)從O點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí)間為2秒,∴0<t≤2時(shí),點(diǎn)Q在線(xiàn)段AO上,即CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=?OP?yD=(2-t)×2=2-t,S△DOQ=?OQ?xD=×2t×1=t,∵S△ODP=S△ODQ,∴2-t=t,∴t=1.(3)結(jié)論:的值不變,其值為2.理由如下:如圖2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如圖,過(guò)H點(diǎn)作AC的平行線(xiàn),交x軸于P,則∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴=2.【點(diǎn)睛】本題主要考查三角形綜合題、非負(fù)數(shù)的性質(zhì)、三角形的面積、平行線(xiàn)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線(xiàn),學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題.12.(1)見(jiàn)解析;(2)45;(3)不變,見(jiàn)解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線(xiàn),可得∠DON,∠OCF的度數(shù),也解析:(1)見(jiàn)解析;(2)45;(3)不變,見(jiàn)解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線(xiàn),可得∠DON,∠OCF的度數(shù),也易得∠COE的度數(shù),由三角形外角的性質(zhì)即可求得∠OEF的度數(shù);(3)不變,分三種情況討論即可.【詳解】(1)∵,,且∴,∴m=20,n=70∴∠MOC=90゜-∠AOM=70゜∴∠MOC=∠OCQ=70゜∴MN∥PQ(2)∵∠AON=180゜-∠AOM=160゜又∵平分,平分∴,∵∴∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜故答案為:45.(3)不變,理由如下:如圖,當(dāng)0゜<α<20゜時(shí),∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜當(dāng)α=20゜時(shí),OD與OB共線(xiàn),則∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜當(dāng)20゜<α<90゜時(shí),如圖∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜綜上所述,∠EOF的度數(shù)不變.【點(diǎn)睛】本題主要考查了角平分線(xiàn)的定義,平行線(xiàn)的判定與性質(zhì),角的和差關(guān)系,注意分類(lèi)討論,引入適當(dāng)?shù)牧勘阌谶\(yùn)算簡(jiǎn)便.13.(1)①見(jiàn)解析;②垂;(2)見(jiàn)解析【分析】(1)①過(guò)點(diǎn)折紙,使痕跡垂直直線(xiàn),然后過(guò)點(diǎn)折紙使痕跡與前面的痕跡垂直,從而得到直線(xiàn);②步驟(b)中,折紙實(shí)際上是在尋找過(guò)點(diǎn)的直線(xiàn)的垂線(xiàn).(2)先根據(jù)解析:(1)①見(jiàn)解析;②垂;(2)見(jiàn)解析【分析】(1)①過(guò)點(diǎn)折紙,使痕跡垂直直線(xiàn),然后過(guò)點(diǎn)折紙使痕跡與前面的痕跡垂直,從而得到直線(xiàn);②步驟(b)中,折紙實(shí)際上是在尋找過(guò)點(diǎn)的直線(xiàn)的垂線(xiàn).(2)先根據(jù)平行線(xiàn)的性質(zhì)得到,再利用角平分線(xiàn)的定義得到,然后根據(jù)平行線(xiàn)的判定得到結(jié)論.【詳解】(1)解:①如圖2所示:②在(1)中的步驟(b)中,折紙實(shí)際上是在尋找過(guò)點(diǎn)的直線(xiàn)的垂線(xiàn).故答案為垂;(2)證明:平分,平分(已知),,(角平分線(xiàn)的定義),(已知),(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等),(等量代換),(等式性質(zhì)),(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行).【點(diǎn)睛】本題考查了作圖復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類(lèi)題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了平行線(xiàn)的性質(zhì)與判定.14.(1)136°;(2)∠AOG+∠NEF=90°,理由見(jiàn)解析;(3)當(dāng)點(diǎn)P在GF上時(shí),∠OPQ=140°﹣∠POQ+∠PQF;當(dāng)點(diǎn)P在線(xiàn)段GF的延長(zhǎng)線(xiàn)上時(shí),140°﹣∠POQ=∠OPQ+∠PQF.解析:(1)136°;(2)∠AOG+∠NEF=90°,理由見(jiàn)解析;(3)當(dāng)點(diǎn)P在GF上時(shí),∠OPQ=140°﹣∠POQ+∠PQF;當(dāng)點(diǎn)P在線(xiàn)段GF的延長(zhǎng)線(xiàn)上時(shí),140°﹣∠POQ=∠OPQ+∠PQF.【分析】(1)如圖1,作CP∥a,則CP∥a∥b,根據(jù)平行線(xiàn)的性質(zhì)可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案;(2)如圖2,作CP∥a,則CP∥a∥b,根據(jù)平行線(xiàn)的性質(zhì)可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后結(jié)合已知條件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到結(jié)論;(3)分兩種情況,如圖3,當(dāng)點(diǎn)P在GF上時(shí),過(guò)點(diǎn)P作PN∥OG,則NP∥OG∥EF,根據(jù)平行線(xiàn)的性質(zhì)可推出∠OPQ=∠GOP+∠PQF,進(jìn)一步可得結(jié)論;如圖4,當(dāng)點(diǎn)P在線(xiàn)段GF的延長(zhǎng)線(xiàn)上時(shí),同上面方法利用平行線(xiàn)的性質(zhì)解答即可.【詳解】解:(1)如圖1,作CP∥a,∵,∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案為136°;(2)∠AOG+∠NEF=90°.理由如下:如圖2,作CP∥a,則CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如圖3,當(dāng)點(diǎn)P在GF上時(shí),過(guò)點(diǎn)P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如圖4,當(dāng)點(diǎn)P在線(xiàn)段GF的延長(zhǎng)線(xiàn)上時(shí),過(guò)點(diǎn)P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì)以及平行公理的推論等知識(shí),屬于??碱}型,正確添加輔助線(xiàn)、靈活應(yīng)用平行線(xiàn)的判定和性質(zhì)是解題的關(guān)鍵.15.(1)見(jiàn)解析;(2);見(jiàn)解析;(3)【分析】(1)過(guò)點(diǎn)作,根據(jù)平行線(xiàn)性質(zhì)可得;(2)由(1)結(jié)論可得:,,再根據(jù)角平分線(xiàn)性質(zhì)可得;(3)由(2)結(jié)論可得:.【詳解】(1)證明:如圖1,過(guò)解析:(1)見(jiàn)解析;(2);見(jiàn)解析;(3)【分析】(1)過(guò)點(diǎn)作,根據(jù)平行線(xiàn)性質(zhì)可得;(2)由(1)結(jié)論可得:,,再根據(jù)角平分線(xiàn)性質(zhì)可得;(3)由(2)結(jié)論可得:.【詳解】(1)證明:如圖1,過(guò)點(diǎn)作,∵,∴,∴,,又∵,∴;(2)如圖2,由(1)可得:,,∵的平分線(xiàn)與的平分線(xiàn)相交于點(diǎn),∴,∴;(3)由(2)可得:,,∵,,∴,∴;【點(diǎn)睛】考核知識(shí)點(diǎn):平行線(xiàn)性質(zhì)和判定的綜合運(yùn)用.熟練運(yùn)用平行線(xiàn)性質(zhì)和判定是關(guān)鍵.四、解答題16.(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見(jiàn)解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見(jiàn)解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE的度數(shù).(2)求出∠ADE的度數(shù),利用∠DFE=90°-∠ADE即可求出∠DAE的度數(shù).(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的證明.【詳解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)的大小不變.=14°理由:∵AD平分∠BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C=360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【點(diǎn)睛】本題考查了三角形內(nèi)角和定理和三角形外角的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.17.(1)證明見(jiàn)解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過(guò)點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見(jiàn)解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過(guò)點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應(yīng)用】(2)分別過(guò)E點(diǎn),F(xiàn)點(diǎn),G點(diǎn),H點(diǎn)作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過(guò)點(diǎn)O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M(jìn)1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點(diǎn)睛:本題考查了平行線(xiàn)的性質(zhì),角平分線(xiàn)的定義,解決此類(lèi)題目,過(guò)拐點(diǎn)作平行線(xiàn)是解題的關(guān)鍵,準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系也很重要.18.解決問(wèn)題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問(wèn)題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)解析:解決問(wèn)題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問(wèn)題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)作△ABD的中線(xiàn)AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結(jié)論;(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC的面積=△AOD的面積,△EOC的面積=△BOC的面積的一半,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,求出a、b的值,即可得到結(jié)論.試題解析:解:解決問(wèn)題連接AE.∵點(diǎn)D、E分別是邊AB、BC的中點(diǎn),∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE=2,∴S△ABE=S△AEC=4,∴四邊形ADEC的面積=2+4=6.拓展延伸:解:(1)作△ABD的中線(xiàn)AE,則有BE=ED=DC,∴△ABE的面積=△AED的面積=△ADC的面積=S2,∴S1=2S2.(2)連接AO.∵CO=DO,∴△BOD的面積=△BOC的面積=3,△AOC的面積=△AOD的面積.∵BO=2EO,∴△EOC的面積=△BOC的面積的一半=1.5,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四邊形ADOE的面積為=a+b=6+4.5=10.5.19.(1)∠AEB的大小不會(huì)發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線(xiàn)MN與直線(xiàn)PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠解析:(1)∠AEB的大小不會(huì)發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線(xiàn)MN與直線(xiàn)PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠PAB+∠ABM=270°,根據(jù)角平分線(xiàn)的定義得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到結(jié)論;(2)由于將△ABC沿直線(xiàn)AB折疊,若點(diǎn)C落在直線(xiàn)PQ上,得到∠CAB=∠BAQ,由角平分線(xiàn)的定義得到∠PAC=∠CAB,即可得到結(jié)論;根據(jù)將△ABC沿直線(xiàn)AB折疊,若點(diǎn)C落在直線(xiàn)MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到結(jié)論;(3)由∠BAO與∠BOQ的角平分線(xiàn)相交于E可得出∠E與∠ABO的關(guān)系,由AE、AF分別是∠BAO和∠OAG的角平分線(xiàn)可知∠EAF=90°,在△AEF中,由一個(gè)角是另一個(gè)角的倍分情況進(jìn)行分類(lèi)討論即可.【詳解】解:(1)∠ACB的大小不變,∵直線(xiàn)MN與直線(xiàn)PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分別是∠BAP和∠ABM角的平分線(xiàn),∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵將△ABC沿直線(xiàn)AB折疊,若點(diǎn)C落在直線(xiàn)PQ上,∴∠CAB

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論