版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
(完整版)蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)綜合測(cè)試真題解析一、解答題1.在△ABC中,∠BAC=90°,點(diǎn)D是BC上一點(diǎn),將△ABD沿AD翻折后得到△AED,邊AE交BC于點(diǎn)F.(1)如圖①,當(dāng)AE⊥BC時(shí),寫出圖中所有與∠B相等的角:;所有與∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度數(shù);②是否存在這樣的x的值,使得△DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請(qǐng)說(shuō)明理由.2.在中,射線平分交于點(diǎn),點(diǎn)在邊上運(yùn)動(dòng)(不與點(diǎn)重合),過(guò)點(diǎn)作交于點(diǎn).(1)如圖1,點(diǎn)在線段上運(yùn)動(dòng)時(shí),平分.①若,,則_____;若,則_____;②試探究與之間的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(2)點(diǎn)在線段上運(yùn)動(dòng)時(shí),的角平分線所在直線與射線交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說(shuō)明理由.3.己知:如圖①,直線直線,垂足為,點(diǎn)在射線上,點(diǎn)在射線上(、不與點(diǎn)重合),點(diǎn)在射線上且,過(guò)點(diǎn)作直線.點(diǎn)在點(diǎn)的左邊且(1)直接寫出的面積;(2)如圖②,若,作的平分線交于,交于,試說(shuō)明;(3)如圖③,若,點(diǎn)在射線上運(yùn)動(dòng),的平分線交的延長(zhǎng)線于點(diǎn),在點(diǎn)運(yùn)動(dòng)過(guò)程中的值是否變化?若不變,求出其值;若變化,求出變化范圍.4.如圖,,點(diǎn)A、B分別在直線MN、GH上,點(diǎn)O在直線MN、GH之間,若,.(1)=;(2)如圖2,點(diǎn)C、D是、角平分線上的兩點(diǎn),且,求的度數(shù);(3)如圖3,點(diǎn)F是平面上的一點(diǎn),連結(jié)FA、FB,E是射線FA上的一點(diǎn),若,,且,求n的值.5.已知在中,,點(diǎn)在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當(dāng)點(diǎn)在上時(shí),求度數(shù);(3)將在直線上平移,當(dāng)以為頂點(diǎn)的三角形是直角三角形時(shí),直接寫出度數(shù).6.在△ABC中,∠ABC=∠ACB,點(diǎn)D在直線BC上(不與B、C重合),點(diǎn)E在直線AC上(不與A、C重合),且∠ADE=∠AED.(1)如圖1,若∠ABC=50°,∠AED=80°,則∠CDE=°,此時(shí),=.(2)若點(diǎn)D在BC邊上(點(diǎn)B、C除外)運(yùn)動(dòng)(如圖1),試探究∠BAD與∠CDE的數(shù)量關(guān)系,并說(shuō)明理由;(3)若點(diǎn)D在線段BC的延長(zhǎng)線上,點(diǎn)E在線段AC的延長(zhǎng)線上(如圖2),其余條件不變,請(qǐng)直接寫出∠BAD與∠CDE的數(shù)量關(guān)系:.(4)若點(diǎn)D在線段CB的延長(zhǎng)線上(如圖3),點(diǎn)E在直線AC上,∠BAD=26°,其余條件不變,則∠CDE=(友情提醒:可利用圖3畫圖分析).7.(問(wèn)題情境)蘇科版義務(wù)教育教科書數(shù)學(xué)七下第42頁(yè)有這樣的一個(gè)問(wèn)題:(1)探究1:如圖1,在中,P是與的平分線和的交點(diǎn),通過(guò)分析發(fā)現(xiàn),理由如下:∵和分別是和的角平分線,∴,.∴.又∵在中,,∴∴(2)探究2:如圖2中,H是外角與外角的平分線和的交點(diǎn),若,則______.若,則與有怎樣的關(guān)系?請(qǐng)說(shuō)明理由.(3)探究3:如圖3中,在中,P是與的平分線和的交點(diǎn),過(guò)點(diǎn)P作,交于點(diǎn)D.外角的平分線與的延長(zhǎng)線交于點(diǎn)E,則根據(jù)探究1的結(jié)論,下列角中與相等的角是______;A.B.C.(4)探究4:如圖4中,H是外角與外角的平分線和的交點(diǎn),在探究3條件的基礎(chǔ)上,①試判斷與的位置關(guān)系,并說(shuō)明理由;②在中,存在一個(gè)內(nèi)角等于的3倍,則的度數(shù)為_(kāi)_____8.(概念認(rèn)識(shí))如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問(wèn)題解決)(1)如圖②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分線BD交AC于點(diǎn)D,求∠BDC的度數(shù);(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰BC三分線和∠ACB鄰BC三分線,且∠BPC=140°,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點(diǎn)P.若∠A=m°(),∠B=54°,直接寫出∠BPC的度數(shù).(用含m的代數(shù)式表示)9.直線與直線垂直相交于O,點(diǎn)A在射線上運(yùn)動(dòng),點(diǎn)B在射線上運(yùn)動(dòng).(1)如圖1,已知、分別是和角的平分線,點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出其值;(2)如圖2,延長(zhǎng)至D,己知、的角平分線與的角平分線及其延長(zhǎng)線相交于E、F.①求的度數(shù).②在中,如果有一個(gè)角是另一個(gè)角的3倍,試求的度數(shù).10.已知:直線l分別交AB、CD與E、F兩點(diǎn),且AB∥CD.(1)說(shuō)明:∠1=∠2;(2)如圖2,點(diǎn)M、N在AB、CD之間,且在直線l左側(cè),若∠EMN+∠FNM=260°,①求:∠AEM+∠CFN的度數(shù);②如圖3,若EP平分∠AEM,F(xiàn)P平分∠CFN,求∠P的度數(shù);(3)如圖4,∠2=80°,點(diǎn)G在射線EB上,點(diǎn)H在AB上方的直線l上,點(diǎn)Q是平面內(nèi)一點(diǎn),連接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接寫出∠GQH的度數(shù).【參考答案】一、解答題1.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,再由根據(jù)角的和差計(jì)算即可得∠C的度數(shù),進(jìn)而得∠B的度數(shù).②根據(jù)翻折的性質(zhì)和三角形外角及三角形內(nèi)角和定理,用含x的代數(shù)式表示出∠FDE、∠DFE的度數(shù),分三種情況討論求出符合題意的x值即可.【詳解】(1)由翻折的性質(zhì)可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故與∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故與∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°則,,由翻折可知:∵,,∴,,當(dāng)∠FDE=∠DFE時(shí),,解得:;當(dāng)∠FDE=∠E時(shí),,解得:(因?yàn)?<x≤45,故舍去);當(dāng)∠DFE=∠E時(shí),,解得:(因?yàn)?<x≤45,故舍去);綜上所述,存在這樣的x的值,使得△DEF中有兩個(gè)角相等.且.【點(diǎn)睛】本題考查圖形的翻折、三角形內(nèi)角和定理、平行線的判定及其性質(zhì)、三角形外角的性質(zhì)、等角代換,解題的關(guān)鍵是熟知圖形翻折的性質(zhì)及綜合運(yùn)用所學(xué)知識(shí).2.(1)①115°,110°;②,證明見(jiàn)解析;(2),證明見(jiàn)解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質(zhì)可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,證明見(jiàn)解析;(2),證明見(jiàn)解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質(zhì)可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的內(nèi)角和定理求得∠AFD的度數(shù)即可;已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的內(nèi)角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的內(nèi)角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性質(zhì)可得∠AFD=∠FDM+∠FMD=90°-∠B.【詳解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案為115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如圖,射線ED交AG于點(diǎn)M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【點(diǎn)睛】本題考查了角平分線的定義、平行線的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì),根據(jù)角平分線的定義、平行線的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì)確定各角之間的關(guān)系是解決問(wèn)題的關(guān)鍵.3.(1)3;(2)見(jiàn)解析;(3)見(jiàn)解析【詳解】分析:(1)因?yàn)椤鰾CD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3;(2)見(jiàn)解析;(3)見(jiàn)解析【詳解】分析:(1)因?yàn)椤鰾CD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.詳解:(1)S△BCD=CD?OC=×3×2=3.(2)如圖②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直線MN⊥直線PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分線,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如圖③,∵直線l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分線,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.點(diǎn)睛:本題主要考查垂線,角平分線和三角形面積,解題的關(guān)鍵是找準(zhǔn)相等的角求解.4.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過(guò)O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過(guò)O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過(guò)O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,∵AC平分且,∴,又∵M(jìn)N//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗(yàn):是原方程的根,且符合題意.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進(jìn)行求解是解答本題的關(guān)鍵.5.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內(nèi)角互補(bǔ),得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內(nèi)角互補(bǔ),得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得出結(jié)論.【詳解】解:(1),,,,,;(2)由(1)知,,,,,;(3)當(dāng)時(shí),如圖3,由(1)知,,;當(dāng)時(shí),如圖4,,點(diǎn),重合,,,由(1)知,,,即當(dāng)以、、為頂點(diǎn)的三角形是直角三角形時(shí),度數(shù)為或.【點(diǎn)睛】此題是三角形綜合題,主要考查了平行線的性質(zhì),三角形的內(nèi)角和定理,角的和差的計(jì)算,求出是解本題的關(guān)鍵.6.(1)30,2;(2)∠BAD=2∠CDE,理由見(jiàn)解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內(nèi)角和定理以及三角形的外角的性質(zhì)解決問(wèn)題即可;(2)結(jié)論:∠B解析:(1)30,2;(2)∠BAD=2∠CDE,理由見(jiàn)解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內(nèi)角和定理以及三角形的外角的性質(zhì)解決問(wèn)題即可;(2)結(jié)論:∠BAD=2∠CDE.設(shè)∠B=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=yx,∠DAE=180°-2y,推出∠BAD=∠BAC-∠DAE=2y-2x=2(y-x),由此可得結(jié)論.(3)如圖②中,結(jié)論:∠BAD=2∠CDE.解決方法類似(2).(4)分兩種情形:①當(dāng)點(diǎn)E在CA的延長(zhǎng)線上,設(shè)∠ABC=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=180°-(y+x),∠DAE=180°-2y,由題意,∠BAD=180°-∠BAC-∠DAE=2x+2y-180°=22°,推出x+y=101°,可得結(jié)論.②如圖④中,當(dāng)點(diǎn)E在AC的延長(zhǎng)線上時(shí),同法可求.【詳解】解:(1)如圖①中,∵∠ABC=∠ACB=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠AED=∠CDE+∠C,∴∠CDE=80°﹣50°=30°,∵∠ADE=∠AED=80°,∴∠DAE=180°﹣80°﹣80°=20°,∴∠BAD=∠BAC﹣∠DAE=80°﹣20°=60°,∴=2.故答案為30,2;(2)結(jié)論:∠BAD=2∠CDE.理由:設(shè)∠B=∠C=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=y(tǒng)﹣x,∠DAE=180°﹣2y,∴∠BAD=∠BAC﹣∠DAE=2y﹣2x=2(y﹣x),∴∠BAD=2∠CDE;(3)如圖②中,結(jié)論:∠BAD=2∠CDE.理由:設(shè)∠B=∠ACB=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=∠BAC+∠DAE=360°﹣2(x+y),∴∠BAD=2∠CDE.故答案為:∠BAD=2∠CDE;(4)如圖③中,設(shè)∠ABC=∠C=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=180°﹣∠BAC﹣∠DAE=2x+2y﹣180°=26°,∴x+y=103°∴∠CDE=180°﹣103°=77°.如圖④中,當(dāng)點(diǎn)E在AC的延長(zhǎng)線上時(shí),設(shè)∠ABC=∠ACB=x,∠AED=∠ADE=y(tǒng),則∠ADB=x﹣26°,∠CDE=y(tǒng)﹣(x﹣26°),∵∠ACB=∠CDE+∠AED,∴x=y(tǒng)+y﹣(x﹣26°),∴x﹣y=13°,∴∠CDE=x﹣y=13°故答案為:77°或13°.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),三角形內(nèi)角和定理,三角形的外角的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)解決問(wèn)題,屬于中考??碱}型.7.(2);;理由見(jiàn)解析;(3)B;(4)①,理由見(jiàn)解析;②45°或60°【分析】(2)由(1)中結(jié)論可得,依據(jù)角平分線的定義,即可得出和均為直角;再根據(jù)四邊形內(nèi)角和進(jìn)行計(jì)算,即可得到的度數(shù)以及與的解析:(2);;理由見(jiàn)解析;(3)B;(4)①,理由見(jiàn)解析;②45°或60°【分析】(2)由(1)中結(jié)論可得,依據(jù)角平分線的定義,即可得出和均為直角;再根據(jù)四邊形內(nèi)角和進(jìn)行計(jì)算,即可得到的度數(shù)以及與的關(guān)系;(3)由(1)中結(jié)論可得,再根據(jù)垂線的定義以及三角形外角性質(zhì),即可得出,進(jìn)而得到;(4)①根據(jù),即可得到,再根據(jù)角平分線的定義,即可得到,依據(jù),即可判定;②由①可得,即可得出,再根據(jù)在中一個(gè)內(nèi)角等于的倍,分三種情況討論,即可得出的度數(shù).【詳解】解:(2)由(1)可得,,∵是外角與外角的平分線和的交點(diǎn),是與的平分線和的交點(diǎn),∴,同理可得,∴四邊形中,,故答案為:;若,則與關(guān)系為:.理由:由(1)可得,,∵是外角與外角的平分線和的交點(diǎn),是與的平分線和的交點(diǎn),∴,同理可得,∴四邊形中,.(3)由(1)可得,,∵,平分,∴,,∵是的外角,∴,∴,故答案為:;(4)①.理由:∵,∴,∵,分別平分,,∴,,∴,∴,∴;②由①可得,∴,∵平分,平分,∴,∴,分三種情況:①若,則,解得(不合題意),②若,則,∴,解得,∴,由(2)可得,,即,∴;③若,則,∴,解得,∴,由(2)可得,,即,∴;綜上所述,的度數(shù)為或.故答案為:或.【點(diǎn)睛】本題屬于三角形綜合題,主要考查的是角平分線的定義,三角形外角性質(zhì),三角形內(nèi)角和定理以及平行線的判定的綜合運(yùn)用,熟記基本圖形中的結(jié)論,準(zhǔn)確識(shí)圖并靈活運(yùn)用基本結(jié)論是解題的關(guān)鍵.8.(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰解析:(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰三分線,且可得,進(jìn)而可求的度數(shù);(3)根據(jù)的三分線所在的直線與的三分線所在的直線交于點(diǎn).分四種情況畫圖:情況一:如圖①,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況二:如圖②,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況三:如圖③,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況四:如圖④,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),再根據(jù),,根據(jù)三角形外角性質(zhì),即可求出的度數(shù).【詳解】解:(1)如圖,當(dāng)BD是“鄰AB三分線”時(shí),;當(dāng)BD是“鄰BC三分線”時(shí),;(2)在△BPC中,∵,∴,又∵BP、CP分別是鄰BC三分線和鄰BC三分線,∴,∴,∴,在△ABC中,,∴.(3)分4種情況進(jìn)行畫圖計(jì)算:情況一:如圖①,當(dāng)BP和CP分別是“鄰AB三分線”、“鄰AC三分線”時(shí),∴;情況二:如圖②,當(dāng)BP和CP分別是“鄰BC三分線”、“鄰CD三分線”時(shí),∴;情況三:如圖③,當(dāng)BP和CP分別是“鄰BC三分線”、“鄰AC三分線”時(shí),∴;情況四:如圖④,當(dāng)BP和CP分別是“鄰AB三分線”、“鄰CD三分線”時(shí),;綜上所述:的度數(shù)為:或或或.【點(diǎn)睛】本題考查了三角形的外角性質(zhì),解決本題的關(guān)鍵是掌握并靈活運(yùn)用三角形的外角性質(zhì),注意要分情況討論.9.(1)不變,135°;(2)①90°;②60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AC、BC分別是∠BAO和∠ABO角的平分線得出∠BAC=∠OAB解析:(1)不變,135°;(2)①90°;②60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AC、BC分別是∠BAO和∠ABO角的平分線得出∠BAC=∠OAB,∠ABC=∠ABO,由三角形內(nèi)角和定理即可得出結(jié)論;(2)①由∠BAO與∠BOQ的角平分線相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,進(jìn)而得出∠E的度數(shù),由AE、AF分別是∠BAO和∠OAD的角平分線可知∠EAF=90°;②在△AEF中,由一個(gè)角是另一個(gè)角的3倍分四種情況進(jìn)行分類討論.【詳解】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年電氣節(jié)能技術(shù)在戶外照明中的應(yīng)用
- 2026年冷熱源系統(tǒng)的電氣節(jié)能設(shè)計(jì)
- 2026年房地產(chǎn)資產(chǎn)證券化的市場(chǎng)創(chuàng)新案例
- 2026春招:文員真題及答案
- 貫口報(bào)花名課件
- 醫(yī)院教育培訓(xùn)與學(xué)術(shù)研討禮儀
- 醫(yī)院導(dǎo)診員服務(wù)禮儀標(biāo)準(zhǔn)
- 貨柜安全檢查培訓(xùn)知識(shí)課件
- 口腔種植手術(shù)技術(shù)進(jìn)展
- 2026年合肥職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試備考試題帶答案解析
- 輸變電工程多維立體參考價(jià)(2025年版)
- 平衡鳥(niǎo)課件教案
- 動(dòng)脈瘤栓塞術(shù)后的護(hù)理
- 幼兒園安全管理制度匯編本
- 靈犬萊西考試題及答案
- 山東省泰安市泰山區(qū)2024-2025學(xué)年五年級(jí)上學(xué)期期末英語(yǔ)試題
- 擠塑機(jī)工操作規(guī)程(4篇)
- 陜西省咸陽(yáng)市秦都區(qū)2024-2025學(xué)年七年級(jí)上學(xué)期1月期末考試語(yǔ)文試卷(無(wú)答案)
- AI虛擬數(shù)字人教學(xué)課件 第5章 騰訊智影:生成數(shù)字人視頻與主播
- CJJT269-2017城市綜合地下管線信息系統(tǒng)技術(shù)規(guī)范正式版
評(píng)論
0/150
提交評(píng)論