版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川涼山州2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則的最小值為()A.1 B.2C.3 D.42.設(shè)是雙曲線與圓在第一象限的交點(diǎn),,分別是雙曲線的左,右焦點(diǎn),若,則雙曲線的離心率為()A. B.C. D.3.已知圓,圓,則兩圓的公切線的條數(shù)為()A.1 B.2C.3 D.44.給出下列判斷,其中正確的是()A.三點(diǎn)唯一確定一個(gè)平面B.一條直線和一個(gè)點(diǎn)唯一確定一個(gè)平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)5.已知數(shù)列為等比數(shù)列,若,則的值為()A.-4 B.4C.-2 D.26.點(diǎn)A是曲線上任意一點(diǎn),則點(diǎn)A到直線的最小距離為()A. B.C. D.7.某地政府為落實(shí)疫情防控常態(tài)化,不定時(shí)從當(dāng)?shù)?80名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測(cè).把這批公務(wù)員按001到780進(jìn)行編號(hào),若054號(hào)被抽中,則下列編號(hào)也被抽中的是()A.076 B.104C.390 D.5228.已知雙曲線上的點(diǎn)到的距離為15,則點(diǎn)到點(diǎn)的距離為()A.7 B.23C.5或25 D.7或239.設(shè)雙曲線的左、右頂點(diǎn)分別為、,左、右焦點(diǎn)分別為、,以為直徑的圓與雙曲線左支的一個(gè)交點(diǎn)為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.10.已知奇函數(shù),則的解集為()A. B.C. D.11.如圖,是函數(shù)的部分圖象,且關(guān)于直線對(duì)稱,則()A. B.C. D.12.將5名北京冬奧會(huì)志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個(gè)項(xiàng)目進(jìn)行培訓(xùn),每名志愿者只分配到1個(gè)項(xiàng)目,每個(gè)項(xiàng)目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線:()的焦點(diǎn)到準(zhǔn)線的距離為4,過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn),若,則______14.必然事件的概率是________.15.若,若,則______16.已知空間向量,,,若,,共面,則實(shí)數(shù)___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,點(diǎn)A(2,4),直線l:,設(shè)圓C的半徑為1,圓心在直線l上,圓心也在直線上.(1)求圓C的方程;(2)過(guò)點(diǎn)A作圓C的切線,求切線的方程.18.(12分)設(shè)數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和為.19.(12分)小張?jiān)?020年初向建行貸款50萬(wàn)元先購(gòu)房,銀行貸款的年利率為4%,要求從貸款開始到2030年要分10年還清,每年年底等額歸還且每年1次,每年至少要還多少錢呢(保留兩位小數(shù))?(提示:(1+4%)10≈1.48)20.(12分)已知公差不為的等差數(shù)列的首項(xiàng),且、、成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),,是數(shù)列的前項(xiàng)和,求使成立的最大的正整數(shù).21.(12分)已知橢圓的標(biāo)準(zhǔn)方程為:,若右焦點(diǎn)為且離心率為(1)求橢圓的方程;(2)設(shè),是上的兩點(diǎn),直線與曲線相切且,,三點(diǎn)共線,求線段的長(zhǎng)22.(10分)已知,其中.(1)若,求在處的切線方程;(2)若是函數(shù)的極小值點(diǎn),求函數(shù)在區(qū)間上的最值;(3)討論函數(shù)的單調(diào)性.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由基本不等式求解即可.【詳解】,當(dāng)且僅當(dāng)時(shí),取等號(hào).即所求最小值.故選:D2、B【解析】先由雙曲線定義與題中條件得到,,求出,,再由題意得到,即可根據(jù)勾股定理求出結(jié)果.【詳解】解:根據(jù)雙曲線定義:,,∴,∴,,,∴是圓的直徑,∴,中,,得故選【點(diǎn)睛】本題主要考查求雙曲線的離心率,熟記雙曲線的簡(jiǎn)單性質(zhì)即可,屬于??碱}型.3、B【解析】根據(jù)圓的方程,求得圓心距和兩圓的半徑之和,之差,判斷兩圓的位置關(guān)系求解.【詳解】因?yàn)閳A,圓,所以,,所以,所以兩圓相交,所以兩圓的公切線的條數(shù)為2,故選:B4、C【解析】根據(jù)確定平面的條件可對(duì)每一個(gè)選項(xiàng)進(jìn)行判斷.【詳解】對(duì)A,如果三點(diǎn)在同一條直線上,則不能確定一個(gè)平面,故A錯(cuò)誤;對(duì)B,如果這個(gè)點(diǎn)在這條直線上,就不能確定一個(gè)平面,故B錯(cuò)誤;對(duì)C,兩條平行直線確定一個(gè)平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個(gè)平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對(duì)D,空間兩兩相交的三條直線可確定一個(gè)平面,也可確定三個(gè)平面,故D錯(cuò)誤.故選:C5、B【解析】根據(jù),利用等比數(shù)列的通項(xiàng)公式求解.【詳解】因?yàn)?,所以,則,解得,所以.故選:B6、A【解析】動(dòng)點(diǎn)在曲線,則找出曲線上某點(diǎn)的斜率與直線的斜率相等的點(diǎn)為距離最小的點(diǎn),利用導(dǎo)數(shù)的幾何意義即可【詳解】不妨設(shè),定義域?yàn)椋簩?duì)求導(dǎo)可得:令解得:(其中舍去)當(dāng)時(shí),,則此時(shí)該點(diǎn)到直線的距離為最小根據(jù)點(diǎn)到直線的距離公式可得:解得:故選:A7、D【解析】根據(jù)題意,求得組數(shù)與抽中編號(hào)的對(duì)應(yīng)關(guān)系,即可判斷和選擇.【詳解】從780名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測(cè),故需要分為組,每組人,設(shè)第組抽中的編號(hào)為,設(shè),由題可知:,故可得,故可得.當(dāng)時(shí),.故選:.8、D【解析】根據(jù)雙曲線的定義知,,即可求解.【詳解】由題意,雙曲線,可得焦點(diǎn)坐標(biāo),根據(jù)雙曲線的定義知,,而,所以或故選:D【點(diǎn)睛】本題主要考查了雙曲線的定義及其應(yīng)用,其中解答中熟記雙曲線的定義,列出方程是解答的關(guān)鍵,著重考查推理與運(yùn)算能力,屬于基礎(chǔ)題.9、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進(jìn)而求出的面積【詳解】雙曲線的方程為:,,設(shè)以為直徑的圓與直線相切與點(diǎn),則,且,,∥.又為的中點(diǎn),,又,,的面積為:.故選:C10、A【解析】先由求出的值,進(jìn)而可得的解析式,對(duì)求導(dǎo),利用基本不等式可判斷恒成立,可判斷的單調(diào)性,根據(jù)單調(diào)性脫掉,再解不等式即可.【詳解】的定義域?yàn)?,因?yàn)槭瞧婧瘮?shù),所以,可得:,所以,經(jīng)檢驗(yàn)是奇函數(shù),符合題意,所以,因?yàn)椋?,?dāng)且僅當(dāng)即時(shí)等號(hào)成立,所以在上單調(diào)遞增,由可得,即,解得:或,所以的解集為,故選:A.11、C【解析】先根據(jù)條件確定為函數(shù)的極大值點(diǎn),得到的值,再根據(jù)圖像的單調(diào)性和導(dǎo)數(shù)幾何意義得到和的正負(fù)即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點(diǎn),所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導(dǎo)數(shù)的幾何意義,所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導(dǎo)數(shù)的幾何意義所以.即.故選:C.12、C【解析】先確定有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個(gè)小組,有種選法;然后連同其余三人,看成四個(gè)元素,四個(gè)項(xiàng)目看成四個(gè)不同的位置,四個(gè)不同的元素在四個(gè)不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用問(wèn)題,屬基礎(chǔ)題,關(guān)鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】易得拋物線方程為,根據(jù),求得點(diǎn)P的坐標(biāo),進(jìn)而得到直線l的方程,與拋物線方程聯(lián)立,再利用拋物線定義求解.【詳解】解:因?yàn)閽佄锞€的焦點(diǎn)到準(zhǔn)線的距離為4,所以,則拋物線:,設(shè)點(diǎn)的坐標(biāo)為,的坐標(biāo)為,因?yàn)?,所以,則,則,所以直線的方程為,代入拋物線方程可得,故,則,所以故答案為:1514、1【解析】直接由必然事件的定義求解【詳解】因?yàn)楸厝皇录且欢ㄒl(fā)生的,所以必然事件的概率是1,故答案為:115、2【解析】首先利用二項(xiàng)展開式的通項(xiàng)公式,求,再利用賦值法求系數(shù)的和以及【詳解】展開式的通項(xiàng)為,令,則,即,故,令,得.又,所以故故答案為:16、1【解析】根據(jù)向量共面,可設(shè),先求解出的值,則的值可求.【詳解】因?yàn)?,,共面且,不共線,所以可設(shè),所以,所以,所以,所以,故答案為:1.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)或【解析】(1)直接求出圓心的坐標(biāo),寫出圓的方程;(2)分斜率存在和斜率不存在進(jìn)行分類討論,利用幾何法列方程,即可求解.【小問(wèn)1詳解】由圓心C在直線l:上可設(shè):點(diǎn),又C也在直線上,∴,∴又圓C的半徑為1,∴圓C的方程為.【小問(wèn)2詳解】當(dāng)直線垂直于x軸時(shí),與圓C相切,此時(shí)直線方程為.當(dāng)直線與x軸不垂直時(shí),設(shè)過(guò)A點(diǎn)的切線方程為,即,則,解得.此時(shí)切線方程,.綜上所述,所求切線為或18、(1);(2).【解析】(1)利用可求得結(jié)果;(2)由(1)可得,利用裂項(xiàng)相消法可求得結(jié)果.【小問(wèn)1詳解】當(dāng)時(shí),;當(dāng)時(shí),,;經(jīng)檢驗(yàn):滿足;綜上所述:.【小問(wèn)2詳解】由(1)得:,.19、每年至少要還6.17萬(wàn)元.【解析】根據(jù)貸款總額和還款總額相等,50(1+4%)10=x·(1+4%)9+x·(1+4%)8+…+x,求解即可.【詳解】50萬(wàn)元10年產(chǎn)生本息和與每年還x萬(wàn)元的本息和相等,故有購(gòu)房款50萬(wàn)元十年的本息和:50(1+4%)10,每年還x萬(wàn)元的本息和:x·(1+4%)9+x·(1+4%)8+…+x=,從而有50(1+4%)10=,解得x≈6.17,即每年至少要還6.17萬(wàn)元.20、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件可得出關(guān)于實(shí)數(shù)的等式,結(jié)合可求得的值,由此可得出數(shù)列的通項(xiàng)公式;(2)利用裂項(xiàng)求和法求出,解不等式即可得出結(jié)果.【小問(wèn)1詳解】解:設(shè)等差數(shù)列公差為,則,由題意可得,即,整理得,,解得,故.【小問(wèn)2詳解】解:,所以,,由得,可得,所以,滿足成立的最大的正整數(shù)的值為.21、(1);(2).【解析】(1)根據(jù)橢圓的焦點(diǎn)、離心率求橢圓參數(shù),寫出橢圓方程即可.(2)由(1)知曲線為,討論直線的存在性,設(shè)直線方程聯(lián)立橢圓方程并應(yīng)用韋達(dá)定理求弦長(zhǎng)即可.【詳解】(1)由題意,橢圓半焦距且,則,又,∴橢圓方程為;(2)由(1)得,曲線為當(dāng)直線的斜率不存在時(shí),直線,不合題意:當(dāng)直線的斜率存在時(shí),設(shè),又,,三點(diǎn)共線,可設(shè)直線,即,由直線與曲線相切可得,解得,聯(lián)立,得,則,,∴.22、(1);(2)最大值為5,最小值為;(3)答案見(jiàn)解析.【解析】(1)求出導(dǎo)函數(shù),進(jìn)而根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,然后求出切線方程;(2)根據(jù)求出a,進(jìn)而求出函數(shù)的單調(diào)區(qū)間,然后求出函數(shù)的最值;(3)先求出導(dǎo)函數(shù),然后討論a的取值范圍,進(jìn)而求出函數(shù)的單調(diào)區(qū)間.【小問(wèn)1詳解】當(dāng)時(shí),,,切點(diǎn)坐標(biāo)為,,切線
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年大理州強(qiáng)制隔離戒毒所公開選調(diào)事業(yè)單位工作人員備考題庫(kù)及完整答案詳解一套
- 2026年中國(guó)科學(xué)院光電技術(shù)研究所園區(qū)運(yùn)行維護(hù)崗位社會(huì)招聘8人備考題庫(kù)及答案詳解參考
- 2026年媒體記者崗位面試題庫(kù)及分析
- 2026年游戲策劃師面試題集游戲設(shè)計(jì)與用戶體驗(yàn)
- 《GBT 24830-2009擬毛刺線蟲屬(傳毒種類)檢疫鑒定方法》專題研究報(bào)告
- 《DLT 1020-2006電容式靜力水準(zhǔn)儀》專題研究報(bào)告:深度與未來(lái)應(yīng)用前瞻
- 2026年中國(guó)民航科學(xué)技術(shù)研究院面向社會(huì)公開招聘合同制工作人員29人備考題庫(kù)及參考答案詳解
- 2026年哈爾濱玻璃鋼研究院有限公司招聘?jìng)淇碱}庫(kù)及參考答案詳解
- 2026年外資企業(yè)人力資源管理職位專業(yè)知識(shí)測(cè)試題目
- 2026年信貸經(jīng)理筆試面試題及風(fēng)險(xiǎn)控制要點(diǎn)含答案
- 新生兒氣道管理臨床實(shí)踐指南(2025版)
- 酒吧消防安培訓(xùn)
- 養(yǎng)老院消防培訓(xùn)方案2025年課件
- Smaart7產(chǎn)品使用說(shuō)明手冊(cè)
- 包裝班組年終總結(jié)
- 瓷磚工程驗(yàn)收課程
- 2025 小學(xué)二年級(jí)數(shù)學(xué)上冊(cè)乘法口訣對(duì)口令練習(xí)課件
- 專升本旅游管理專業(yè)2025年旅游學(xué)概論試卷(含答案)
- 難治性癌痛護(hù)理
- 蘇教版五年級(jí)上冊(cè)復(fù)習(xí)教案(2025-2026學(xué)年)
- DB15∕T 2431-2021 荒漠藻擴(kuò)繁培養(yǎng)技術(shù)規(guī)程
評(píng)論
0/150
提交評(píng)論