四川省樂山市2026屆高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第1頁
四川省樂山市2026屆高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第2頁
四川省樂山市2026屆高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第3頁
四川省樂山市2026屆高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第4頁
四川省樂山市2026屆高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省樂山市2026屆高一上數(shù)學(xué)期末質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形.此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形ABC的斜邊BC,直角邊AB,AC.△ABC的三邊所圍成的區(qū)域記為I,黑色部分記為II,其余部分記為III.在整個圖形中隨機取一點,此點取自I,II,III的概率分別記為p1,p2,p3,則A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p32.下列函數(shù)中既是奇函數(shù)又在定義域上是單調(diào)遞增函數(shù)的是()A. B.C. D.3.已知某扇形的面積為,圓心角為,則該扇形的半徑為()A.3 B.C.9 D.4.若,,則的值為()A. B.-C. D.5.將函數(shù)的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得的圖象向左平移個單位,得到的圖象對應(yīng)的解析式是A. B.C. D.6.已知aR且a>b,則下列不等式一定成立的是()A.> B.>abC.> D.a(a—b)>b(a—b)7.設(shè)函數(shù)的部分圖象如圖,則A.B.C.D.8.已知,求().A.6 B.7C.8 D.99.“”是“”的()A.充要條件 B.既不充分也不必要條件C.充分不必要條件 D.必要不充分條件10.已知函數(shù),若關(guān)于的方程有四個不同的實數(shù)解,且,則的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,且,則上的最小值是_________.12.計算的結(jié)果是_____________13.16、17世紀(jì)之交,隨著天文、航海、工程、貿(mào)易以及軍事的發(fā)展,改進數(shù)字計算方法成了當(dāng)務(wù)之急,數(shù)學(xué)家納皮爾在研究天文學(xué)的過程中,為簡化計算發(fā)明了對數(shù).直到18世紀(jì),才由瑞士數(shù)學(xué)家歐拉發(fā)現(xiàn)了指數(shù)與對數(shù)的互逆關(guān)系,即.現(xiàn)在已知,則__________14.直線被圓截得弦長的最小值為______.15.已知函數(shù),設(shè),,若成立,則實數(shù)的最大值是_______16.函數(shù)的最大值為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓經(jīng)過(2,5),(﹣2,1)兩點,并且圓心在直線yx上.(1)求圓的標(biāo)準(zhǔn)方程;(2)求圓上的點到直線3x﹣4y+23=0的最小距離.18.已知集合,,.(1)求,;(2)若,求實數(shù)的取值范圍.19.已知函數(shù)的定義域為,在上為增函數(shù),且對任意的,都有(1)試判斷的奇偶性;(2)若,求實數(shù)的取值范圍20.(1)試證明差角的余弦公式:;(2)利用公式推導(dǎo):①和角的余弦公式,正弦公式,正切公式;②倍角公式,,.21.設(shè)全集為,,,求:(1)(2)(3)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】首先設(shè)出直角三角形三條邊的長度,根據(jù)其為直角三角形,從而得到三邊的關(guān)系,然后應(yīng)用相應(yīng)的面積公式求得各個區(qū)域的面積,根據(jù)其數(shù)值大小,確定其關(guān)系,再利用面積型幾何概型的概率公式確定出p1,p2,p3的關(guān)系,從而求得結(jié)果.【詳解】設(shè),則有,從而可以求得的面積為,黑色部分的面積為,其余部分的面積為,所以有,根據(jù)面積型幾何概型的概率公式,可以得到,故選A.點睛:該題考查的是面積型幾何概型的有關(guān)問題,題中需要解決的是概率的大小,根據(jù)面積型幾何概型的概率公式,將比較概率的大小問題轉(zhuǎn)化為比較區(qū)域的面積的大小,利用相關(guān)圖形的面積公式求得結(jié)果.2、D【解析】結(jié)合初等函數(shù)的奇偶性和單調(diào)性可排除選項;再根據(jù)奇偶性定義和復(fù)合函數(shù)單調(diào)性的判斷方法可證得正確.【詳解】對A,∵是奇函數(shù),在(一∞,0)和(0,+∞)上是單調(diào)遞增函數(shù),在定義域上不是遞增函數(shù),可知A錯誤;對B,不是奇函數(shù),可知B錯誤;對C,不是單調(diào)遞增函數(shù),可知C錯誤;對D,,則為奇函數(shù);當(dāng)時,單調(diào)遞增,由復(fù)合函數(shù)單調(diào)性可知在上單調(diào)遞增,根據(jù)奇函數(shù)對稱性,可知在上單調(diào)遞增,則D正確.故選:D3、A【解析】根據(jù)扇形面積公式求出半徑.【詳解】扇形的面積,解得:故選:A4、D【解析】直接利用同角三角函數(shù)關(guān)系式的應(yīng)用求出結(jié)果.【詳解】已知,,所以,即,所以,所以,所以.故選:D.5、C【解析】將函數(shù)y=sin(x-)的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)得到y(tǒng)=sin(x-),再向左平移個單位得到的解析式為y=sin((x+)-)=y=sin(x-),故選C6、D【解析】對于A,B,C舉反例判斷即可,對于D,利用不等式的性質(zhì)判斷【詳解】解:對于A,若,則,所以A錯誤;對于B,若,則,此時,所以B錯誤;對于C,若,則,此時,所以C錯誤;對于D,因為,所以,所以,所以D正確,故選:D7、A【解析】根據(jù)函數(shù)的圖象,求出A,和的值,得到函數(shù)的解析式,即可得到結(jié)論【詳解】由圖象知,,則,所以,即,由五點對應(yīng)法,得,即,即,故選A【點睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,其中解答中根據(jù)條件求出A,和的值是解決本題的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.8、B【解析】利用向量的加法規(guī)則求解的坐標(biāo),結(jié)合模長公式可得.【詳解】因為,所以,所以.故選:B.【點睛】本題主要考查平面向量的坐標(biāo)運算,明確向量的坐標(biāo)運算規(guī)則是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).9、D【解析】求得的解集,結(jié)合充分條件、必要條件的判定方法,即可求解.【詳解】由,可得或,所以“”是“或”成立的充分不必要條件,所以“”是“”必要不充分條件.故選:D.10、D【解析】畫出函數(shù)的圖象,根據(jù)對稱性和對數(shù)函數(shù)的圖象和性質(zhì)即可求出【詳解】可畫函數(shù)圖象如下所示若關(guān)于的方程有四個不同的實數(shù)解,且,當(dāng)時解得或,關(guān)于直線對稱,則,令函數(shù),則函數(shù)在上單調(diào)遞增,故當(dāng)時故當(dāng)時所以即故選:【點睛】本題考查函數(shù)方程思想,對數(shù)函數(shù)的性質(zhì),數(shù)形結(jié)合是解答本題的關(guān)鍵,屬于難題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】將的最小值轉(zhuǎn)化為求的最小值,然后展開后利用基本不等式求得其最小值【詳解】解:因為,且,,當(dāng)且僅當(dāng)時,即,時等號成立;故答案為:12、.【解析】根據(jù)對數(shù)的運算公式,即可求解.【詳解】根據(jù)對數(shù)的運算公式,可得.故答案為:.13、3【解析】由將對數(shù)轉(zhuǎn)化為指數(shù)14、【解析】先求直線所過定點,根據(jù)幾何關(guān)系求解【詳解】,由解得所以直線過定點A(1,1),圓心C(0,0),由幾何關(guān)系知當(dāng)AC與直線垂直時弦長最小.弦長最小值為.故答案為:15、【解析】設(shè)不等式的解集為,從而得出韋達定理,由可得,要使,即不等式的解集為,則可得,以及是方程的兩個根,再得出其韋達定理,比較韋達定理可得出,從而求出與的關(guān)系,代入,得出答案.【詳解】,則由題意設(shè)集合,即不等式的解集為所以是方程的兩個不等實數(shù)根則,則由可得,由,所以不等式的解集為所以是方程,即的兩個不等實數(shù)根,所以故,,則,則,則由,即,即,解得綜上可得,所以的最大值為故答案:16、【解析】根據(jù)二次函數(shù)的性質(zhì),結(jié)合給定的區(qū)間求最大值即可.【詳解】由,則開口向上且對稱軸為,又,∴,,故函數(shù)最大值為.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(x﹣2)2+(y﹣1)2=16(2)1【解析】(1)先求出圓心的坐標(biāo)和圓的半徑,即得圓的標(biāo)準(zhǔn)方程;(2)求出圓心到直線3x﹣4y+23=0的距離即得解.【詳解】(1)A(2,5),B(﹣2,1)中點為(0,3),經(jīng)過A(2,5),B(﹣2,1)的直線的斜率為,所以線段AB中垂線方程為,聯(lián)立直線方程y解得圓心坐標(biāo)為(2,1),所以圓的半徑.所以圓的標(biāo)準(zhǔn)方程為(x﹣2)2+(y﹣1)2=16.(2)圓的圓心為(2,1),半徑r=4.圓心到直線3x﹣4y+23=0的距離d.則圓上的點到直線3x﹣4y+23=0的最小距離為d﹣r=1.【點睛】本題主要考查圓的標(biāo)準(zhǔn)方程的求法和圓上的點到直線的距離的最值的求法,意在考查學(xué)生對這些知識的理解掌握水平.18、(1),;(2).【解析】(1)利用集合的并、交運算求,即可.(2)討論、,根據(jù)列不等式求的范圍.【詳解】(1)∵,∴,.(2)當(dāng)時,,解得,則滿足.當(dāng)時,,解得,又∴,解得,即.綜上,.19、(1)奇函數(shù)(2)【解析】(1)抽象函數(shù)用賦值法,再結(jié)合函數(shù)奇偶性的定義判斷即可;(2)利用奇函數(shù)的單調(diào)性和定義及函數(shù)的單調(diào)性,聯(lián)立不等式不等式組,再解不等式組即可.【小問1詳解】因為函數(shù)定義域為,令,得.令,得,即,所以函數(shù)為奇函數(shù)【小問2詳解】由(1)知函數(shù)為奇函數(shù),又知函數(shù)的定義域為,在上為增函數(shù),所以函數(shù)在上為增函數(shù)因為,即,所以,解得,所以實數(shù)的取值范圍為20、(1)證明見解析;(2)①答案見解析;②答案見解析【解析】在單位圓里面證明,然后根據(jù)誘導(dǎo)公式即可證明和,利用正弦余弦和正切的關(guān)系即可證明;用正弦余弦正切的和角公式即可證明對應(yīng)的二倍角公式.【詳解】(1)不妨令.如圖,設(shè)單位圓與軸的正半軸相交于點,以軸非負半軸為始邊作角,它們的終邊分別與單位圓相交于點,,.連接.若把扇形繞著點旋轉(zhuǎn)角,則點分別與點重合.根據(jù)圓的旋轉(zhuǎn)對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論