鄂爾多斯市重點中學2026屆數(shù)學高三上期末調(diào)研試題含解析_第1頁
鄂爾多斯市重點中學2026屆數(shù)學高三上期末調(diào)研試題含解析_第2頁
鄂爾多斯市重點中學2026屆數(shù)學高三上期末調(diào)研試題含解析_第3頁
鄂爾多斯市重點中學2026屆數(shù)學高三上期末調(diào)研試題含解析_第4頁
鄂爾多斯市重點中學2026屆數(shù)學高三上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

鄂爾多斯市重點中學2026屆數(shù)學高三上期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.2.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.3.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.4.由曲線圍成的封閉圖形的面積為()A. B. C. D.5.甲在微信群中發(fā)了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的概率是()A. B. C. D.6.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.7.將函數(shù)的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.9.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.10.下列判斷錯誤的是()A.若隨機變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機變量服從二項分布:,則D.是的充分不必要條件11.2020年是脫貧攻堅決戰(zhàn)決勝之年,某市為早日實現(xiàn)目標,現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種12.若直線與曲線相切,則()A.3 B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則________,的面積為________.14.古代“五行”學認為:“物質(zhì)分金、木、土、水、火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質(zhì)任意排成一列,但排列中屬性相克的兩種物質(zhì)不相鄰,則這樣的排列方法有_________種.(用數(shù)字作答)15.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎.在比賽結(jié)果揭曉之前,四人的猜測如下表,其中“√”表示猜測某人獲獎,“×”表示猜測某人未獲獎,而“○”則表示對某人是否獲獎未發(fā)表意見.已知四個人中有且只有兩個人的猜測是正確的,那么兩名獲獎者是_______.甲獲獎乙獲獎丙獲獎丁獲獎甲的猜測√××√乙的猜測×○○√丙的猜測×√×√丁的猜測○○√×16.已知向量,,,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知:,:,:.(1)求與的極坐標方程(2)若與交于點A,與交于點B,,求的最大值.18.(12分)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,直線和直線的極坐標方程分別是()和(),其中().(1)寫出曲線的直角坐標方程;(2)設直線和直線分別與曲線交于除極點的另外點,,求的面積最小值.19.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)若在上恒成立,求的取值范圍.20.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設,且有兩個極值點,,若,求的最小值.21.(12分)如圖,內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,平面ABC,,.(1)求證:平面ACD;(2)設,表示三棱錐B-ACE的體積,求函數(shù)的解析式及最大值.22.(10分)如圖,四棱錐中,底面是邊長為的菱形,,點分別是的中點.(1)求證:平面;(2)若,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大?。驹斀狻?,,又,∴,即,∴.故選:D.【點睛】本題考查冪和對數(shù)的大小比較,解題時能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.2、B【解析】

由題中垂直關(guān)系,可得漸近線的方程,結(jié)合,構(gòu)造齊次關(guān)系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數(shù)學運算的能力,屬于中檔題.3、C【解析】

先求導函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對導函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復雜的三角函數(shù)含自變量的代數(shù)式整體當作一個角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.4、A【解析】

先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點睛】本題考察定積分的應用,屬于基礎題.解題時注意積分區(qū)間和被積函數(shù)的選取.5、B【解析】

將所有可能的情況全部枚舉出來,再根據(jù)古典概型的方法求解即可.【詳解】設乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎題型.6、A【解析】

根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當且僅當時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運算,屬于中檔題.7、B【解析】

首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當時,最小值為,故選B.【點睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡單題目.8、D【解析】

先根據(jù)三視圖還原幾何體是一個四棱錐,根據(jù)三視圖的數(shù)據(jù),計算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.9、D【解析】

通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.10、D【解析】

根據(jù)正態(tài)分布、空間中點線面的位置關(guān)系、充分條件與必要條件的判斷、二項分布及不等式的性質(zhì)等知識,依次對四個選項加以分析判斷,進而可求解.【詳解】對于選項,若隨機變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項正確,不符合題意;對于選項,已知直線平面,直線平面,則當時一定有,充分性成立,而當時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項正確,不符合題意;對于選項,若隨機變量服從二項分布:,則,故選項正確,不符合題意;對于選項,,僅當時有,當時,不成立,故充分性不成立;若,僅當時有,當時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項不正確,符合題意.故選:D【點睛】本題考查正態(tài)分布、空間中點線面的位置關(guān)系、充分條件與必要條件的判斷、二項分布及不等式的性質(zhì)等知識,考查理解辨析能力與運算求解能力,屬于基礎題.11、B【解析】

分成甲單獨到縣和甲與另一人一同到縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點睛】本小題主要考查簡答排列組合的計算,屬于基礎題.12、A【解析】

設切點為,對求導,得到,從而得到切線的斜率,結(jié)合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關(guān)直線與曲線相切求參數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用余弦定理可求得的值,進而可得出的值,最后利用三角形的面積公式可得出的面積.【詳解】由余弦定理得,則,因此,的面積為.故答案為:;.【點睛】本題考查利用余弦定理解三角形,同時也考查了三角形面積的計算,考查計算能力,屬于基礎題.14、1.【解析】試題分析:由題意,可看作五個位置排列五種事物,第一位置有五種排列方法,不妨假設排上的是金,則第二步只能從土與水兩者中選一種排放,故有兩種選擇不妨假設排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故總的排列方法種數(shù)有5×2×1×1×1=1.考點:排列、組合及簡單計數(shù)問題.點評:本題考查排列排列組合及簡單計數(shù)問題,解答本題關(guān)鍵是理解題設中的限制條件及“五行”學說的背景,利用分步原理正確計數(shù),本題較抽象,計數(shù)時要考慮周詳.15、乙、丁【解析】

本題首先可根據(jù)題意中的“四個人中有且只有兩個人的猜測是正確的”將題目分為四種情況,然后對四種情況依次進行分析,觀察四人所猜測的結(jié)果是否沖突,最后即可得出結(jié)果.【詳解】從表中可知,若甲猜測正確,則乙,丙,丁猜測錯誤,與題意不符,故甲猜測錯誤;若乙猜測正確,則依題意丙猜測無法確定正誤,丁猜測錯誤;若丙猜測正確,則丁猜測錯誤;綜上只有乙,丙猜測不矛盾,依題意乙,丙猜測是正確的,從而得出乙,丁獲獎.所以本題答案為乙、丁.【點睛】本題是一個簡單的合情推理題,能否根據(jù)“四個人中有且只有兩個人的猜測是正確的”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關(guān)鍵,考查推理能力,是簡單題.16、2【解析】

由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點睛】本題主要考查了向量的坐標運算,向量垂直的性質(zhì),向量的模的計算.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的極坐標方程為;的極坐標方程為:(2)【解析】

(1)根據(jù),代入即可轉(zhuǎn)化.(2)由:,可得,代入與的極坐標方程求出,從而可得,再利用二倍角公式、輔助角公式,借助三角函數(shù)的性質(zhì)即可求解.【詳解】(1):,,的極坐標方程為:,,的極坐標方程為:,(2):,則(為銳角),,,,當時取等號.【點睛】本題考查了極坐標與直角坐標的互化、二倍角公式、輔助角公式以及三角函數(shù)的性質(zhì),屬于基礎題.18、(1);(2)16.【解析】

(1)將極坐標方程化為直角坐標方程即可;(2)利用極徑的幾何意義,聯(lián)立曲線,直線,直線的極坐標方程,得出,利用三角形面積公式,結(jié)合正弦函數(shù)的性質(zhì),得出的面積最小值.【詳解】(1)曲線:,即化為直角坐標方程為:;(2),即同理∴當且僅當,即()時取等號即的面積最小值為16【點睛】本題主要考查了極坐標方程化直角坐標方程以及極坐標的應用,屬于中檔題.19、(1);(2)【解析】

(1),對函數(shù)求導,分別求出和,即可求出在點處的切線方程;(2)對求導,分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因為,所以,所以,則,故曲線在點處的切線方程為.(2)因為,所以,①當時,在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當時,令,解得,即在上單調(diào)遞減,則,故不符合題意;③當時,在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點睛】本題考查了曲線的切線方程的求法,考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問題,利用分類討論是解決本題的較好方法,屬于中檔題.20、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解析】

(1)求出f(x)的導數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進而得到函數(shù)的極值;(2)由題意可得,,求出的表達式,,求出h(t)的最小值即可.【詳解】(1)將代入中,得到,求導,得到,結(jié)合,當?shù)玫剑涸鰠^(qū)間為,當,得減區(qū)間為且在時有極小值,無極大值.(2)將解析式代入,得,求導得到,令,得到,,,,,,,,因為,所以設,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論