版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆甘肅省白銀市數(shù)學高二上期末學業(yè)水平測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線的傾斜角的取值范圍是()A. B.C. D.2.已知直線經(jīng)過拋物線的焦點,且與該拋物線交于,兩點,若滿足,則直線的方程為()A. B.C. D.3.過點且與原點距離最大的直線方程是()A. B.C. D.4.,,,,設(shè),則下列判斷中正確的是()A. B.C. D.5.設(shè)為可導函數(shù),且滿足,則曲線在點處的切線的斜率是A. B.C. D.6.已知長方體的底面ABCD是邊長為4的正方形,長方體的高為,則與對角面夾角的正弦值等于()A. B.C. D.7.接種疫苗是預防控制新冠疫情最有效的方法,我國自2021年1月9日起實施全民免費接種新冠疫苗并持續(xù)加快推進接種工作.某地為方便居民接種,共設(shè)置了A、B、C三個新冠疫苗接種點,每位接種者可去任一個接種點接種.若甲、乙兩人去接種新冠疫苗,則兩人不在同一接種點接種疫苗的概率為()A. B.C. D.8.已知{an}是以10為首項,-3為公差的等差數(shù)列,則當{an}的前n項和Sn,取得最大值時,n=()A.3 B.4C.5 D.69.點A是曲線上任意一點,則點A到直線的最小距離為()A. B.C. D.10.設(shè),直線與直線平行,則()A. B.C. D.11.橢圓的左右兩焦點分別為,,過垂直于x軸的直線交C于A,B兩點,,則橢圓C的離心率是()A. B.C. D.12.設(shè),是橢圓C:的左、右焦點,若橢圓C上存在一點P,使得,則橢圓C的離心率e的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,點Р在底面ABC內(nèi)的射影為Q,若,則點Q定是的______心14.已知為坐標原點,、分別是雙曲線的左、右頂點,是雙曲線上不同于、的動點,直線、與軸分別交于點、兩點,則________15.已知方程表示焦點在x軸上的雙曲線,則m的取值范圍為________16.已知長方體中,,,則點到平面的距離為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)進入11月份,大學強基計劃開始報名,某“五校聯(lián)盟”統(tǒng)一對五校高三學生進行綜合素質(zhì)測試,在所有參加測試的學生中隨機抽取了部分學生的成績,得到如圖2所示的成績頻率分布直方圖:(1)估計五校學生綜合素質(zhì)成績的平均值和中位數(shù);(每組數(shù)據(jù)用該組的區(qū)間中點值表示)(2)某校決定從本校綜合素質(zhì)成績排名前6名同學中,推薦3人參加強基計劃考試,若已知6名同學中有4名理科生,2名文科生,試求這3人中含文科生的概率.18.(12分)如圖,在長方體中,,.點E在上,且(1)求證:平面;(2)求二面角的余弦值19.(12分)已知命題:;:.(1)若“”為真命題,求實數(shù)的取值范圍;(2)若“”為真命題,求實數(shù)的取值范圍.20.(12分)函數(shù).(1)當時,解不等式;(2)若不等式對任意恒成立,求實數(shù)a的取值范圍.21.(12分)已知函數(shù).(1)求曲線在點處的切線方程;(2)求在區(qū)間上的最值.22.(10分)如圖,在三棱柱中,平面ABC,,,,點D,E分別在棱和棱上,且,,M為棱的中點(1)求證:;(2)求直線AB與平面所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由直線方程求得直線斜率的范圍,再由斜率等于傾斜角的正切值可得直線的傾斜角的取值范圍.【詳解】∵直線的斜率,,設(shè)直線的傾斜角為,則,解得.故選:A.2、C【解析】求出拋物線的焦點,設(shè)出直線方程,代入拋物線方程,運用韋達定理和向量坐標表示,解得,即可得出直線的方程.【詳解】解:拋物線的焦點,設(shè)直線為,則,整理得,則,.由可得,代入上式即可得,所以,整理得:.故選:C.【點睛】本題考查直線和拋物線的位置關(guān)系,主要考查韋達定理和向量共線的坐標表示,考查運算能力,屬于中檔題.3、A【解析】過點且與原點O距離最遠的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠的直垂直于直線,,∴過點且與原點O距離最遠的直線的斜率為,∴過點且與原點O距離最遠的直線方程為:,即.故選:A4、D【解析】通過湊配構(gòu)造的方式,構(gòu)造出新式子,且可以化簡為整數(shù),然后利用放縮思想得到S的范圍.【詳解】解:,,,,,;,.故選:D5、D【解析】由題,為可導函數(shù),,即曲線在點處的切線的斜率是,選D【點睛】本題考查導數(shù)的定義,切線的斜率,以及極限的運算,本題解題的關(guān)鍵是對所給的極限式進行整理,得到符合導數(shù)定義的形式6、C【解析】建立空間直角坐標系,結(jié)合空間向量的夾角坐標公式即可求出線面角的正弦值.【詳解】連接,建立如圖所示的空間直角坐標系∵底面是邊長為4的正方形,,∴,,,因為,,且,所以平面,∴,平面的法向量,∴與對角面所成角的正弦值為故選:C.7、C【解析】利用古典概型的概率公式可求出結(jié)果【詳解】由題知,基本事件總數(shù)為甲、乙兩人不在同一接種點接種疫苗的基本事件數(shù)為由古典概型概率計算公式可得所求概率故選:8、B【解析】由題可得當時,,當時,,即得.【詳解】∵{an}是以10為首項,-3為公差的等差數(shù)列,∴,故當時,,當時,,故時,取得最大值故選:B.9、A【解析】動點在曲線,則找出曲線上某點的斜率與直線的斜率相等的點為距離最小的點,利用導數(shù)的幾何意義即可【詳解】不妨設(shè),定義域為:對求導可得:令解得:(其中舍去)當時,,則此時該點到直線的距離為最小根據(jù)點到直線的距離公式可得:解得:故選:A10、C【解析】根據(jù)直線平行求解即可.【詳解】因為直線與直線平行,所以,即,經(jīng)檢驗,滿足題意.故選:C11、C【解析】由題可得為等邊三角形,可得,即得.【詳解】∵過垂直于x軸的直線交橢圓C于A,B兩點,,∴為等邊三角形,由代入,可得,∴,所以,即,又,解得.故選:C.12、B【解析】先設(shè),根據(jù)P在橢圓上得到,由,得到的范圍,即為離心率的范圍.【詳解】由橢圓的方程可得,,設(shè),由,則,即,由P在橢圓上可得,所以,代入可得所以,因為,所以整理可得:,消去得:所以,即所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、外【解析】由可得,故是的外心.【詳解】解:如圖,∵點在底面ABC內(nèi)的射影為,∴平面又∵平面、平面、平面,∴、、.在和中,,∴,∴同理可得:,故故是的外心.故答案為:外.14、3【解析】求得坐標,設(shè)出點坐標,求得直線的方程,由此求得兩點的縱坐標,進而求得.【詳解】依題意,設(shè),則,直線的方程為,則,直線的方程為,則,所以.故答案為:15、【解析】根據(jù)焦點在軸的雙曲線的標準方程的特征可得答案.【詳解】因為雙曲線的焦點在軸上,則,解得.所以的取值范圍為故答案為:16、##2.4【解析】過作于,可證即為點到平面的距離.【詳解】過作于,∵是長方體,∴平面平面,又∵平面平面,∴平面,設(shè)點到平面的距離為,∵∥平面,∴根據(jù)等面積法得,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)平均值為74.6分,中位數(shù)為75分;(2).【解析】(1)利用頻率分布直方圖平均數(shù)和中位數(shù)算法直接計算即可;(2)將學生編號,用枚舉法求解即可.【小問1詳解】依題意可知:∴綜合素質(zhì)成績的平均值為74.6分.由圖易知∵分數(shù)在50~60、60~70、70~80的頻率分別為0.12、0.18、0.40,∴中位數(shù)在70~80之間,設(shè)為,則,解得,∴綜合素質(zhì)成績的中位數(shù)為75分.【小問2詳解】設(shè)這6名同學分別為,,,,1,2,其中設(shè)1,2為文科生,從6人中選出3人,所有的可能的結(jié)果為,,,,,,,,,,,,,,,,,,,,共20種,其中含有文科學生的有,,,,,,,,,,,,,,,,共16種,∴含文科生的概率為.18、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,分別寫出,,的坐標,證明,,即可得證;(2)由(1)知,的法向量為,直接寫出平面法向量,按照公式求解即可.【小問1詳解】在長方體中,以為坐標原點,所在直線分別為軸,軸,軸建立如圖所示空間直角坐標系因為,,所以,,,,,則,,,所以有,,則,,又所以平面小問2詳解】由(1)知平面的法向量為,而平面法向量為所以,由圖知二面角為銳二面角,所以二面角的余弦值為19、(1);(2).【解析】(1)先分別求出命題為真命題時的取值范圍,再由已知“”為真命題進行分類討論即可求解;(2)由(1)可知,當同時為真時,即可求出的范圍.試題解析:若為真,則,所以,則若為真,則,即.(1)若“”為真,則或,則.(2)若“”為真,則且,則.20、(1);(2).【解析】(1)由題設(shè),原不等式等價于,分類討論即可得出結(jié)論;(2)不等式對任意恒成立,即,即可求實數(shù)a的取值范圍.【詳解】(1)當時,原不等式等價于,當時,,解得,即;當時,恒成立,即;當時,,解得,即;綜上,不等式的解集為;(2),,即或,解得,∴a取值范圍是.21、(1)(2)最小值為0,最大值為4【解析】(1)利用導數(shù)求得切線方程.(2)結(jié)合導數(shù)求得在區(qū)間上的最值.【小問1詳解】,所以曲線在點處的切線方程為.【小問2詳解】,所以在區(qū)間遞增;在區(qū)間遞減,,所以在區(qū)間上的最小值為,最大值為.22、(1)證明見解析;(2)【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流行業(yè)安全操作規(guī)程培訓課件
- 小學體育課德育滲透教學策略
- 硝化工藝安全培訓課件
- 行政經(jīng)理職位說明書及任職要求
- 教師職業(yè)道德教育培訓案例匯編
- 醫(yī)療器械驗收標準及質(zhì)量控制要點
- 水利樞紐運行維護監(jiān)理驗收報告
- 餐飲服務(wù)行業(yè)員工崗位培訓教材
- 戶外夏令營安全管理注意事項
- 中學生法律知識演講稿稿件
- 2024年四川省內(nèi)江市中考物理試卷附答案
- 鋼鐵購銷簡單合同范本
- TSG特種設(shè)備安全技術(shù)規(guī)范TSGD-202工業(yè)管道安全技術(shù)規(guī)程
- 2024年4月自考00612日本文學選讀試題
- 《海上風電場工程巖土試驗規(guī)程》(NB/T 10107-2018)
- 地產(chǎn)公司設(shè)計部工作總結(jié)
- 《期權(quán)基礎(chǔ)知識》課件
- 新年團建室內(nèi)活動策劃
- 2023秋季學期國開思政課《思想道德與法治》在線形考(專題檢測1-7)試題及答案
- EPC工程總承包項目設(shè)計及施工的配合制度
- DB21∕T 3358-2020 電梯再生制動系統(tǒng)要求及試驗方法
評論
0/150
提交評論