版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)易試題君之名校金卷君2026屆高二數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知梯形中,,且,則的值為()A. B.C. D.2.已知梯形ABCD中,,,且對(duì)角線交于點(diǎn)E,過(guò)點(diǎn)E作與AB所在直線的平行線l.若AB和CD所在直線的方程分別是與,則直線l與CD所在直線的距離為()A.1 B.2C.3 D.43.已知、、、是直線,、是平面,、、是點(diǎn)(、不重合),下列敘述錯(cuò)誤的是()A.若,,,,則B.若,,,則C.若,,則D.若,,則4.已知為橢圓的兩個(gè)焦點(diǎn),過(guò)的直線交橢圓于兩點(diǎn),若,則()A. B.C. D.5.下列對(duì)動(dòng)直線的四種表述不正確的是()A.與曲線C:可能相離,相切,相交B.恒過(guò)定點(diǎn)C.時(shí),直線斜率是0D.時(shí),直線的傾斜角是135°6.已知空間向量,,,下列命題中正確的個(gè)數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對(duì)任意一個(gè)空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個(gè)基底.A.0 B.1C.2 D.37.中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為,實(shí)軸長(zhǎng)為2,則雙曲線C的方程為()A. B.C. D.8.設(shè)是數(shù)列的前項(xiàng)和,已知,則數(shù)列()A.是等比數(shù)列,但不是等差數(shù)列 B.是等差數(shù)列,但不是等比數(shù)列C.是等比數(shù)列,也是等差數(shù)列 D.既不是等差數(shù)列,也不是等比數(shù)列9.阿基米德(公元前287年~公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.10.設(shè)雙曲線:的左,右焦點(diǎn)分別為,,過(guò)的直線與雙曲線的右支交于A,B兩點(diǎn),若,則雙曲線的離心率為()A.4 B.2C. D.11.下列命題中的假命題是()A.,B.存在四邊相等的四邊形不是正方形C.“存在實(shí)數(shù),使”的否定是“不存在實(shí)數(shù),使”D.若且,則,至少有一個(gè)大于12.如圖,在直三棱柱中,且,點(diǎn)E為中點(diǎn).若平面過(guò)點(diǎn)E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是等差數(shù)列,若,則___________.14.若直線與平行,則實(shí)數(shù)________.15.如圖,甲站在水庫(kù)底面上的點(diǎn)處,乙站在水壩斜面上的點(diǎn)處,已知庫(kù)底與水壩斜面所成的二面角為,測(cè)得從,到庫(kù)底與水壩斜面的交線的距離分別為,,若,則甲,乙兩人相距________________16.過(guò)點(diǎn)與直線平行的直線的方程是________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓的方程為(1)求圓的圓心及半徑;(2)是否存在直線滿足:經(jīng)過(guò)點(diǎn),且_________________?如果存在,求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由從下列三個(gè)條件中任選一個(gè)補(bǔ)充在上面問(wèn)題中并作答:條件①:被圓所截得的弦長(zhǎng)最長(zhǎng);條件②:被圓所截得的弦長(zhǎng)最短;條件③:被圓所截得的弦長(zhǎng)為注:如果選擇多個(gè)條件分別作答,按第一個(gè)解答計(jì)分18.(12分)設(shè)函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)討論單調(diào)性;(2)證明:當(dāng)時(shí),.19.(12分)已知橢圓E:的離心率,且右焦點(diǎn)到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)四邊形的頂點(diǎn)在橢圓上,且對(duì)角線,過(guò)原點(diǎn),若,證明:四邊形的面積為定值.20.(12分)已知橢圓C:的離心率為,,是橢圓的左、右焦點(diǎn),過(guò)且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1(1)求橢圓C的方程;(2)過(guò)點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),求(O為坐標(biāo)原點(diǎn))的面積的最大值21.(12分)中,內(nèi)角、、所對(duì)的邊為、、,.(1)求角的大??;(2)若、、成等差數(shù)列,且,求邊長(zhǎng)的值.22.(10分)如圖,在四棱錐中,四邊形為正方形,已知平面,且,E為中點(diǎn)(1)證明:平面;(2)證明:平面平面
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)共線定理、平面向量的加法和減法法則,即可求得,進(jìn)而求出的值,即可求出結(jié)果.【詳解】因?yàn)?,所以又,所?故選:D.2、B【解析】先求得直線AB和CD之間的距離,再求直線l與CD所在直線的距離即可解決.【詳解】梯形ABCD中,,,且對(duì)角線交于點(diǎn)E,則有△與△相似,相似比為,則,點(diǎn)E到CD所在直線的距離為AB和CD所在直線距離的又AB和CD所在直線的距離為,則直線l與CD所在直線的距離為2故選:B3、D【解析】由公理2可判斷A選項(xiàng);由公理3可判斷B選項(xiàng);利用平行線的傳遞性可判斷C選項(xiàng);直接判斷線線位置關(guān)系,可判斷D選項(xiàng).【詳解】對(duì)于A選項(xiàng),由公理2可知,若,,,,則,A對(duì);對(duì)于B選項(xiàng),由公理3可知,若,,,則,B對(duì);對(duì)于C選項(xiàng),由空間中平行線的傳遞性可知,若,,則,C對(duì);對(duì)于D選項(xiàng),若,,則與平行、相交或異面,D錯(cuò).故選:D.4、C【解析】根據(jù)橢圓的定義可得,由即可求解.【詳解】由,可得根據(jù)橢圓的定義,所以.故選:C5、A【解析】根據(jù)過(guò)定點(diǎn)的直線系求出恒過(guò)點(diǎn)可判斷B,由點(diǎn)與圓的位置關(guān)系可判斷A,由直線方程可判斷CD.【詳解】直線可化為,令,,解得,,所以直線恒過(guò)定點(diǎn),而該定點(diǎn)在圓C:內(nèi)部,所以必與該圓相交當(dāng)時(shí),直線方程為,故斜率為0,當(dāng)時(shí),直線方程為,故斜率為,傾斜角為135°.故選:A6、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯(cuò)誤;若非零向量共面,則向量可以在一個(gè)與組成的平面平行的平面上,故②錯(cuò)誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個(gè)基底,故④錯(cuò)誤;故選:C.7、D【解析】根據(jù)條件,求出,的值,結(jié)合雙曲線的方程進(jìn)行求解即可【詳解】解:設(shè)雙曲線的方程為由已知得:,,再由,,雙曲線的方程為:故選:D8、B【解析】根據(jù)與的關(guān)系求出通項(xiàng),然后可知答案.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,綜上,的通項(xiàng)公式為,數(shù)列為等差數(shù)列同理,由等比數(shù)列定義可判斷數(shù)列不是等比數(shù)列.故選:B9、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.10、B【解析】根據(jù)雙曲線的定義及,求出,,,,再利用余弦定理計(jì)算可得;【詳解】解:依題意可知、,又且,所以,,,,則,且,即,即,所以離心率.故選:B11、C【解析】利用簡(jiǎn)易邏輯的知識(shí)逐一判斷即可.【詳解】,故A正確;菱形的四邊相等,但不一定是正方形,故B正確;“存在實(shí)數(shù),使”的否定是“對(duì)任意的實(shí)數(shù)都有”,故C錯(cuò)誤;假設(shè)且,則,與矛盾,故D正確;故選:C12、B【解析】構(gòu)造出長(zhǎng)方體,取中點(diǎn)連接然后利用臨界位置分情況討論即可.【詳解】如圖,構(gòu)造出長(zhǎng)方體,取中點(diǎn),連接則所有過(guò)點(diǎn)與成角的平面,均與以為軸的圓錐相切,過(guò)點(diǎn)繞且與成角,當(dāng)與水平面垂直且在面的左側(cè)(在長(zhǎng)方體的外面)時(shí),與面所成角為75°(與面成45°,與成30°),過(guò)點(diǎn)繞旋轉(zhuǎn),轉(zhuǎn)一周,90°顯然最大,到了另一個(gè)邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過(guò)程中,有兩次角為30
,綜上,這樣的平面α有2個(gè),故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】利用計(jì)算可得答案.【詳解】設(shè)等差數(shù)列的公差為,故答案為:8.14、【解析】根據(jù)兩直線平行可得出關(guān)于實(shí)數(shù)的等式與不等式,即可解得實(shí)數(shù)的值.【詳解】因?yàn)?,則,解得.故答案為:.15、【解析】首先構(gòu)造二面角的平面角,如圖,再分別在和中求解.【詳解】作,且,連結(jié),,,,平面且,四邊形時(shí)平行四邊形,,平面,平面,中,,中,.故答案為:16、【解析】根據(jù)給定條件設(shè)出所求直線方程,利用待定系數(shù)法求解即得.【詳解】設(shè)與直線平行的直線的方程為,而點(diǎn)在直線上,于是得,解得,所以所求的直線的方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)圓心為,半徑為;(2)答案見解析.【解析】(1)寫出圓標(biāo)準(zhǔn)方程即得解;(2)選擇條件①:直線應(yīng)過(guò)圓心即直線過(guò)點(diǎn)和,即得解;選擇條件②:直線應(yīng)與垂直,求出直線的方程即得解;選擇條件③:不存在滿足條件的直線.【小問(wèn)1詳解】解:由圓的方程整理可得,所以圓心為,半徑為.小問(wèn)2詳解】選擇條件①:若直線被圓所截得的弦長(zhǎng)最長(zhǎng),則直線應(yīng)過(guò)圓心即直線過(guò)點(diǎn)和,所以直線的斜率為,則直線的方程為.選擇條件②:若直線過(guò)點(diǎn)被圓所截得的弦長(zhǎng)最短,則直線應(yīng)與垂直.又,所以.故直線方程為.選擇條件③:經(jīng)過(guò)點(diǎn)的直線被圓所截得的最短弦長(zhǎng),由于,所以不存在滿足條件的直線.18、(1)答案見解析(2)答案見解析【解析】(1)求導(dǎo)數(shù),分和,兩種情況討論,即可求得的單調(diào)性;(2)令,利用導(dǎo)數(shù)求得單調(diào)遞增,結(jié)合,得到,進(jìn)而證得.【詳解】(1)由函數(shù),可得,當(dāng)時(shí),,在內(nèi)單調(diào)遞減;當(dāng)時(shí),由有,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.(2)證明:令,則,當(dāng)時(shí),,單調(diào)遞增,因?yàn)?,所以,即,?dāng)時(shí),可得,即【點(diǎn)睛】利用導(dǎo)數(shù)證明不等式常見類型及解題策略(1)構(gòu)造差函數(shù).根據(jù)差函數(shù)導(dǎo)函數(shù)符號(hào),確定差函數(shù)單調(diào)性,利用單調(diào)性得不等量關(guān)系,進(jìn)而證明不等式.(2)根據(jù)條件,尋找目標(biāo)函數(shù).一般思路為利用條件將求和問(wèn)題轉(zhuǎn)化為對(duì)應(yīng)項(xiàng)之間大小關(guān)系,或利用放縮、等量代換將多元函數(shù)轉(zhuǎn)化為一元函數(shù).19、(1);(2)證明見解析.【解析】(1)根據(jù)已知條件列出關(guān)于a、b、c的方程組求解即可;(2)設(shè),代入,利用韋達(dá)定理,通過(guò),結(jié)合,轉(zhuǎn)化求解即可【小問(wèn)1詳解】【小問(wèn)2詳解】設(shè),設(shè),代入,得,∵,∴,,∵,得,即,解得,∵,且,又,,整理得,∴為定值20、(1);(2)1.【解析】(1)根據(jù)給定條件結(jié)合列式計(jì)算得解.(2)設(shè)出直線l的方程,與橢圓C的方程聯(lián)立,借助韋達(dá)定理結(jié)合均值不等式計(jì)算作答.【小問(wèn)1詳解】橢圓C的半焦距為c,離心率,因過(guò)且垂直于x軸的直線被橢圓C截得的弦長(zhǎng)為1,將代入橢圓C方程得:,即,則有,解得,所以橢圓C的方程為.【小問(wèn)2詳解】由(1)知,,依題意,直線l的斜率不為0,則設(shè)直線l的方程為,,,由消去x并整理得:,,,的面積,,設(shè),,,,當(dāng)且僅當(dāng),時(shí)取得“=”,于是得,,所以面積的最大值為1.【點(diǎn)睛】思路點(diǎn)睛:解決直線與橢圓的綜合問(wèn)題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、橢圓的條件;(2)強(qiáng)化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長(zhǎng)、斜率、三角形的面積等問(wèn)題21、(1);(2).【解析】(1)利用正弦定理可求得的值,結(jié)合角的取值范圍可求得角的值;(2)由三角形的面積公式可求得的值,由已知可得,利用余弦定理可得出關(guān)于的等式,即可求得邊的長(zhǎng).【小問(wèn)1詳解】解:因?yàn)椋烧叶ɡ砜傻茫?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年智能室內(nèi)門項(xiàng)目項(xiàng)目建議書
- 銀行數(shù)據(jù)挖掘與預(yù)測(cè)分析-第2篇
- 2026年呼和浩特職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試模擬試題帶答案解析
- 合辦診所合作協(xié)議書
- 2026年泰山科技學(xué)院高職單招職業(yè)適應(yīng)性考試模擬試題帶答案解析
- 快遞驛站壟斷協(xié)議書模板圖
- 輸入法開發(fā)協(xié)議書
- 2026年重慶三峽醫(yī)藥高等??茖W(xué)校高職單招職業(yè)適應(yīng)性測(cè)試備考試題帶答案解析
- 2026年山西衛(wèi)生健康職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能筆試模擬試題帶答案解析
- 2026年上海海洋大學(xué)單招職業(yè)技能考試備考試題帶答案解析
- 教育質(zhì)量監(jiān)測(cè)培訓(xùn)
- 信息檢索與處理方法試題及答案
- 設(shè)備安裝與調(diào)試說(shuō)明手冊(cè)
- 制造業(yè)生產(chǎn)部經(jīng)理崗位職責(zé)
- 心電監(jiān)測(cè)基本知識(shí)
- 2024-2025學(xué)年云南省昆明市官渡區(qū)五年級(jí)(上)期末數(shù)學(xué)試卷(含答案)
- 水電廠辨識(shí)安全隱患培訓(xùn)
- 驅(qū)動(dòng)基因陽(yáng)性非小細(xì)胞肺癌腦轉(zhuǎn)移臨床診療指南(2025版)解讀
- 2024年陶瓷展示中心建設(shè)項(xiàng)目可行性研究報(bào)告
- Unit5 (單元卷)人教PEP版 英語(yǔ)六年級(jí)上冊(cè)
- 《高校防艾知識(shí)講座》課件
評(píng)論
0/150
提交評(píng)論