天成教育命題研究院2026屆高三上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
天成教育命題研究院2026屆高三上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
天成教育命題研究院2026屆高三上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
天成教育命題研究院2026屆高三上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
天成教育命題研究院2026屆高三上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

天成教育命題研究院2026屆高三上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記為數(shù)列的前項和數(shù)列對任意的滿足.若,則當(dāng)取最小值時,等于()A.6 B.7 C.8 D.92.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.3.已知集合,,若,則實數(shù)的值可以為()A. B. C. D.4.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B5.己知函數(shù)若函數(shù)的圖象上關(guān)于原點對稱的點有2對,則實數(shù)的取值范圍是()A. B. C. D.6.設(shè)為等差數(shù)列的前項和,若,則A. B.C. D.7.設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個 B.4個 C.5個 D.6個8.已知等差數(shù)列中,則()A.10 B.16 C.20 D.249.若樣本的平均數(shù)是10,方差為2,則對于樣本,下列結(jié)論正確的是()A.平均數(shù)為20,方差為4 B.平均數(shù)為11,方差為4C.平均數(shù)為21,方差為8 D.平均數(shù)為20,方差為810.已知集合,則全集則下列結(jié)論正確的是()A. B. C. D.11.已知集合,,則集合子集的個數(shù)為()A. B. C. D.12.已知復(fù)數(shù),則對應(yīng)的點在復(fù)平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.三所學(xué)校舉行高三聯(lián)考,三所學(xué)校參加聯(lián)考的人數(shù)分別為160,240,400,為調(diào)查聯(lián)考數(shù)學(xué)學(xué)科的成績,現(xiàn)采用分層抽樣的方法在這三所學(xué)校中抽取樣本,若在學(xué)校抽取的數(shù)學(xué)成績的份數(shù)為30,則抽取的樣本容量為____________.14.在中,,,,則__________.15.已知向量,,則______.16.曲線在點處的切線方程為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知()過點,且當(dāng)時,函數(shù)取得最大值1.(1)將函數(shù)的圖象向右平移個單位得到函數(shù),求函數(shù)的表達式;(2)在(1)的條件下,函數(shù),求在上的值域.18.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設(shè),,求證:.19.(12分)在極坐標(biāo)系中,已知曲線,.(1)求曲線、的直角坐標(biāo)方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點,求兩交點間的距離.20.(12分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線C1和C2的極坐標(biāo)方程:(Ⅱ)設(shè)射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點,求|AB|的值.21.(12分)如圖所示,在四棱錐中,底面是邊長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)(文科)求三棱錐的體積;(理科)求二面角的正切值.22.(10分)已知圓上有一動點,點的坐標(biāo)為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標(biāo)為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當(dāng)時,取最小值.故選:A【點睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項,采用了賦值法,屬于中檔題.2、B【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當(dāng)m,n時,檢驗可得,A、C、D都不正確,故選:B.【點睛】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項.3、D【解析】

由題意可得,根據(jù),即可得出,從而求出結(jié)果.【詳解】,且,,∴的值可以為.故選:D.【點睛】考查描述法表示集合的定義,以及并集的定義及運算.4、C【解析】試題分析:集合考點:集合間的關(guān)系5、B【解析】

考慮當(dāng)時,有兩個不同的實數(shù)解,令,則有兩個不同的零點,利用導(dǎo)數(shù)和零點存在定理可得實數(shù)的取值范圍.【詳解】因為的圖象上關(guān)于原點對稱的點有2對,所以時,有兩個不同的實數(shù)解.令,則在有兩個不同的零點.又,當(dāng)時,,故在上為增函數(shù),在上至多一個零點,舍.當(dāng)時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因為有兩個不同的零點,所以,解得.又當(dāng)時,且,故在上存在一個零點.又,其中.令,則,當(dāng)時,,故為減函數(shù),所以即.因為,所以在上也存在一個零點.綜上,當(dāng)時,有兩個不同的零點.故選:B.【點睛】本題考查函數(shù)的零點,一般地,較為復(fù)雜的函數(shù)的零點,必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點存在定理說明零點的存在性,本題屬于難題.6、C【解析】

根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.7、A【解析】試題分析:,,所以,即集合中共有3個元素,故選A.考點:集合的運算.8、C【解析】

根據(jù)等差數(shù)列性質(zhì)得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的??碱}型.9、D【解析】

由兩組數(shù)據(jù)間的關(guān)系,可判斷二者平均數(shù)的關(guān)系,方差的關(guān)系,進而可得到答案.【詳解】樣本的平均數(shù)是10,方差為2,所以樣本的平均數(shù)為,方差為.故選:D.【點睛】樣本的平均數(shù)是,方差為,則的平均數(shù)為,方差為.10、D【解析】

化簡集合,根據(jù)對數(shù)函數(shù)的性質(zhì),化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結(jié)論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關(guān)系,求解不等式是解題的關(guān)鍵,屬于基礎(chǔ)題.11、B【解析】

首先求出,再根據(jù)含有個元素的集合有個子集,計算可得.【詳解】解:,,,子集的個數(shù)為.故選:.【點睛】考查列舉法、描述法的定義,以及交集的運算,集合子集個數(shù)的計算公式,屬于基礎(chǔ)題.12、A【解析】

利用復(fù)數(shù)除法運算化簡,由此求得對應(yīng)點所在象限.【詳解】依題意,對應(yīng)點為,在第一象限.故選A.【點睛】本小題主要考查復(fù)數(shù)除法運算,考查復(fù)數(shù)對應(yīng)點的坐標(biāo)所在象限,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

某層抽取的人數(shù)等于該層的總?cè)藬?shù)乘以抽樣比.【詳解】設(shè)抽取的樣本容量為x,由已知,,解得.故答案為:【點睛】本題考查隨機抽樣中的分層抽樣,考查學(xué)生基本的運算能力,是一道容易題.14、1【解析】

由已知利用余弦定理可得,即可解得的值.【詳解】解:,,,由余弦定理,可得,整理可得:,解得或(舍去).故答案為:1.【點睛】本題主要考查余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.15、【解析】

求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.【點睛】本題考查求向量的模,掌握數(shù)量積的定義與運算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運算轉(zhuǎn)化為數(shù)量積的運算.16、【解析】

求導(dǎo),得到和,利用點斜式即可求得結(jié)果.【詳解】由于,,所以,由點斜式可得切線方程為.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)的幾何意義求切線方程,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

試題分析:(1)由題意可得函數(shù)f(x)的解析式為,則.(2)整理函數(shù)h(x)的解析式可得:,結(jié)合函數(shù)的定義域可得函數(shù)的值域為.試題解析:(1)由函數(shù)取得最大值1,可得,函數(shù)過得,,∵,∴,.(2),,,值域為.18、(1).(2)見解析【解析】

(1)由絕對值三解不等式可得,所以當(dāng)時,,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當(dāng)時,,解得.(2)∵,∴,∴,當(dāng)且僅當(dāng),即,時,等號成立.∴.【點睛】本題主要考查絕對值三角不等式及基本不等式的簡單應(yīng)用,屬于中檔題.19、(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】

(1)直接利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)換關(guān)系可將曲線的方程化為直角坐標(biāo)方程,進而可判斷出曲線的形狀,在曲線的方程兩邊同時乘以得,由可將曲線的方程化為直角坐標(biāo)方程,由此可判斷出曲線的形狀;(2)由直線過圓的圓心,可得出為圓的一條直徑,進而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標(biāo)方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點在直線上,直線過圓的圓心.因此,是圓的直徑,.【點睛】本題考查曲線的極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)化,同時也考查了直線截圓所得弦長的計算,考查計算能力,屬于基礎(chǔ)題.20、(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)根據(jù),可得曲線C1的極坐標(biāo)方程,然后先計算曲線C2的普通方程,最后根據(jù)極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式,可得結(jié)果.(Ⅱ)將射線θ=分別與曲線C1和C2極坐標(biāo)方程聯(lián)立,可得A,B的極坐標(biāo),然后簡單計算,可得結(jié)果.【詳解】(Ⅰ)由所以曲線的極坐標(biāo)方程為,曲線的普通方程為則曲線的極坐標(biāo)方程為(Ⅱ)令,則,,則,即,所以,,故.【點睛】本題考查極坐標(biāo)方程和參數(shù)方程與直角坐標(biāo)方程的轉(zhuǎn)化,以及極坐標(biāo)方程中的幾何意義,屬基礎(chǔ)題.21、(1)見解析(2)(文)(理)【解析】

(1)證明:取PD中點G,連結(jié)GF、AG,∵GF為△PDC的中位線,∴GF∥CD且,又AE∥CD且,∴GF∥AE且GF=AE,∴EFGA是平行四邊形,則EF∥AG,又EF不在平面PAD內(nèi),AG在平面PAD內(nèi),∴EF∥面PAD;(2)(文)解:取AD中點O,連結(jié)PO,∵面PAD⊥面ABCD,△PAD為正三角形,∴PO⊥面ABCD,且,又PC為面ABCD斜線,F(xiàn)為PC中點,∴F到面ABCD距離,故;(理)連OB交CE于M,可得Rt△EBC≌Rt△OAB,∴∠MEB=∠AOB,則∠MEB+∠MBE=90°,即OM⊥EC.連PM,又由(2)知PO⊥EC,可得EC⊥平面POM,則PM⊥EC,即∠PMO是二面角P-EC-D的平面角,在Rt△EBC中,,∴,∴,即二面角P-EC-D的正切值為.【方法點晴】本題主要考查線面平行的判定定理、二面角的求法、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.本題(1)是就是利用方法①證明的.22、(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)先畫出圖形,結(jié)合垂直平分線和平行四邊形性質(zhì)可得為一定值,,故可確定點軌跡為橢圓(),進而求解;(Ⅱ)設(shè)直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論