云南省保山一中2026屆高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第1頁
云南省保山一中2026屆高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第2頁
云南省保山一中2026屆高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第3頁
云南省保山一中2026屆高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第4頁
云南省保山一中2026屆高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省保山一中2026屆高二上數(shù)學(xué)期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知中,內(nèi)角所對的邊分別,若,,,則()A. B.C. D.2.已知是定義在上的函數(shù),其導(dǎo)函數(shù)為,且,且,則不等式的解集為()A. B.C. D.3.已知雙曲線E的漸近線為,則其離心率為()A. B.C. D.或4.從全體三位正整數(shù)中任取一數(shù),則此數(shù)以2為底的對數(shù)也是正整數(shù)的概率為()A. B.C. D.以上全不對5.設(shè)是公差的等差數(shù)列,如果,那么()A. B.C. D.6.設(shè)函數(shù)的導(dǎo)函數(shù)是,若,則()A. B.C. D.7.已知雙曲線的焦點為,,其漸近線上橫坐標為的點滿足,則()A. B.C.2 D.48.在長方體中,若,,則異而直線與所成角的余弦值為()A. B.C. D.9.已知等比數(shù)列中,,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前項和為()A. B.C. D.10.已知數(shù)列{an}的前n項和為Sn,滿足a1=1,-=1,則an=()A.2n-1 B.nC.2n-1 D.2n-111.在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做“等和數(shù)列”,這個數(shù)叫做數(shù)列的公和.已知等和數(shù)列{an}中,,公和為5,則()A.2 B.﹣2C.3 D.﹣312.已知等差數(shù)列中,、是的兩根,則()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在2021件產(chǎn)品中有10件次品,任意抽取3件,則抽到次品個數(shù)的數(shù)學(xué)期望的值是______.14.復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù)______15.雙曲線的離心率為2,寫出滿足條件的一個雙曲線的標準方程__________.16.若兩條直線與互相垂直,則a的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐P-ABCD的底面是矩形,底面ABCD,,M為BC中點,且.(1)求BC;(2)求二面角A-PM-B的正弦值.18.(12分)已知橢圓的離心率為,且經(jīng)過點.(1)求橢圓的標準方程;(2)已知,經(jīng)過點的直線與橢圓交于、兩點,若原點到直線的距離為,且,求直線的方程.19.(12分)如圖,在三棱錐中,已知△ABC和△PBC均為正三角形,D為BC的中點(1)求證:平面;(2)若,,求三棱錐的體積20.(12分)如圖,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,(1)求證:平面ACF;(2)在線段PB上是否存在一點H,使得CH與平面ACF所成角的正弦值為?若存在,求出線段PH的長度;若不存在,請說明理由21.(12分)平面直角坐標系中,過橢圓:右焦點的直線交M于A,B兩點,P為AB的中點,且OP的斜率為.(1)求橢圓M的方程;(2)C,D為橢圓M上的兩點,若四邊形ACBD的對角線CD與AB垂直,求四邊形ACBD面積的最大值.22.(10分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用正弦定理可直接求得結(jié)果.【詳解】在中,由正弦定理得:.故選:B.2、B【解析】令,再結(jié)合,和已知條件將問題轉(zhuǎn)化為,最后結(jié)合單調(diào)性求解即可.【詳解】解:令,則,因為,所以,即函數(shù)為上的增函數(shù),因為,不等式可化為,所以,故不等式的解集為故選:B3、D【解析】根據(jù)雙曲線標準方程與漸近線的關(guān)系即可求解.【詳解】當雙曲線焦點在x軸上時,漸近線為,故離心率為;當雙曲線焦點在y軸上時,漸近線為,故離心率為;故選:D.4、B【解析】利用古典概型的概率求法求解.【詳解】從全體三位正整數(shù)中任取一數(shù)共有900種取法,以2為底的對數(shù)也是正整數(shù)的三位數(shù)有,共3個,所以以此數(shù)以2為底的對數(shù)也是正整數(shù)的概率為,故選:B5、D【解析】由已知可得,即可得解.【詳解】由已知可得.故選:D.6、A【解析】求導(dǎo)后,令,可求得,再令可求得結(jié)果.【詳解】因為,所以,所以,所以,所以,所以.故選:A【點睛】本題考查了導(dǎo)數(shù)的計算,考查了求導(dǎo)函數(shù)值,屬于基礎(chǔ)題.7、B【解析】由題意可設(shè),則,再由,可得,從而可求出的值【詳解】解:雙曲線的漸近線方程為,故設(shè),設(shè),則,因為,所以,即,所以,因為,所以,因為,所以,故選:B8、C【解析】通過平移把異面直線平移到同一平面中,所以取,的中點,易知且過中心點,所以異而直線與所成角為和所成角,通過解三角形即可得解.【詳解】根據(jù)長方體的對稱性可得體對角線過中心點,取,的中點,易知且過中心點,所以異而直線和所成角為和所成角,連接,在中,,,,所以則異而直線與所成角的余弦值為:,故選:C.9、B【解析】確實新數(shù)列是等比數(shù)列及公比、首項后,由等比數(shù)列前項和公式計算,【詳解】由題意,新數(shù)列為,所以,,前項和為故選:B.10、A【解析】由題可得,利用與的關(guān)系即求.【詳解】∵a1=1,-=1,∴是以1為首項,以1為公差的等差數(shù)列,∴,即,∴當時,,當時,也適合上式,所以故選:A.11、C【解析】利用已知即可求得,再利用已知可得:,問題得解【詳解】解:根據(jù)題意,等和數(shù)列{an}中,,公和為5,則,即可得,又由an﹣1+an=5,則,則3;故選C【點睛】本題主要考查了新概念知識,考查理解能力及轉(zhuǎn)化能力,還考查了數(shù)列的周期性,屬于中檔題12、B【解析】利用韋達定理結(jié)合等差中項的性質(zhì)可求得的值,再結(jié)合等差中項的性質(zhì)可求得結(jié)果.【詳解】對于方程,,由韋達定理可得,故,則,所以,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)抽到的次品的個數(shù)為,則,求出對應(yīng)的概率即得解.【詳解】解:設(shè)抽到的次品的個數(shù)為,則,所以所以抽到次品個數(shù)的數(shù)學(xué)期望的值是故答案為:14、##【解析】根據(jù)共軛復(fù)數(shù)的概念,即可得答案.【詳解】由題意可知:復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù),故答案為:15、(答案不唯一例如:等,只需滿足即可)【解析】根據(jù)離心率和的關(guān)系,可得到,只要滿足以上關(guān)系的即可【詳解】由題可知,又,所以,只要滿足以上關(guān)系即可.,答案不唯一例如:等故答案為:(答案不唯一例如:等,只需滿足即可)16、4【解析】兩直線斜率均存在時,兩直線垂直,斜率相乘等于-1,據(jù)此即可求解.【詳解】由題可知,.故答案為:4.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定條件推導(dǎo)證得,再借助直角三角形中銳角的正切列式求解作答.(2)由給定條件建立空間直角坐標系,借助空間向量求解面面角作答【小問1詳解】連結(jié)BD,如圖,因底面ABCD,且平面ABCD,則,又,,平面PBD,于是得平面PBD,又平面PBD,則,有,又,則有,有,則,解得,所以.【小問2詳解】依題意,DA,DC,DP兩兩垂直,以點D為坐標原點建立如圖所示的空間直角坐標系,由(1)知,,,,,,,,設(shè)平面AMP的法向量為,則,令,得,設(shè)平面BMP的法向量為,則,令,得,設(shè)二面角A-PM-B的平面角為,則,因此,,所以二面角A-PM-B的正弦值為.18、(1);(2).【解析】(1)由已知條件可得出關(guān)于、、的方程組,求出這三個量的值,由此可得出橢圓的標準方程;(2)分析可知直線的斜率存在且不為零,設(shè)直線的方程為,由點到直線的距離公式可得出,設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由可得出,代入韋達定理求出、的值,由此可得出直線的方程.【詳解】(1)設(shè)橢圓的焦距為,則,解得,因此,橢圓的標準方程為;(2)若直線斜率不存在,則直線過原點,不合乎題意.所以,直線的斜率存在,設(shè)斜率為,設(shè)直線方程為,設(shè)、,原點到直線的距離為,,即①.聯(lián)立直線與橢圓方程可得,則,則,由韋達定理可得,.,則為線段的中點,所以,,,得,,所以,,整理可得,解得,即,,因此,直線的方程為或.【點睛】方法點睛:利用韋達定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設(shè)直線方程,設(shè)交點坐標為、;(2)聯(lián)立直線與圓錐曲線的方程,得到關(guān)于(或)的一元二次方程,必要時計算;(3)列出韋達定理;(4)將所求問題或題中的關(guān)系轉(zhuǎn)化為、的形式;(5)代入韋達定理求解.19、(1)證明見解析;(2).【解析】【小問1詳解】因為△ABC和△PBC為正三角形,D為BC的中點,所以,又,所以平面【小問2詳解】因為△ABC和△PBC為正三角形,且,所以,又,所以正三角形的面積為,所以.20、(1)證明見解析(2)存在,的長為或,理由見解析.【解析】(1)建立空間直角坐標系,利用向量法證得平面.(2)設(shè),求出,根據(jù)與平面所成角的正弦值列方程,由此求得,進而求得的長.小問1詳解】依題意,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,,以為空間坐標原點建立如圖所示空間直角坐標系,,,設(shè)平面法向量為,則,故可設(shè),由于,所以平面.【小問2詳解】存在,理由如下:設(shè),,,,依題意與平面所成角的正弦值為,即,,解得或.,即的長為或,使與平面所成角的正弦值為.21、(1)(2)【解析】(1)設(shè),,的中點為,利用“點差法”求解;(2)由求得A,B的坐標,進而得到的長,再根據(jù),設(shè)直線的方程為,由,求得的長,然后由四邊形的面積為求解.【小問1詳解】解:把右焦點代入直線,得,設(shè),,的中點為,則,,相減得,即,即,即.又,,則.又,解得,,故橢圓的方程為.【小問2詳解】聯(lián)立消去,可得,解得或,故交點為,.所以.因為,所以可設(shè)直線的方程為,,,聯(lián)立消去,得到,因為直線與橢圓有兩個不同的交點,則,解得,且,又,則.故四邊形的面積為,故當時,取得最大值,最大值為.所以四邊形的面積的最大值為.22、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標原點,以,所在直線分別為,軸,以過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論