2026屆四川省眉山市高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第1頁
2026屆四川省眉山市高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第2頁
2026屆四川省眉山市高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第3頁
2026屆四川省眉山市高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第4頁
2026屆四川省眉山市高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆四川省眉山市高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的左、右焦點分別為F1,F(xiàn)2,點P在雙曲線上,下列結(jié)論不正確的是()A.該雙曲線的離心率為B.該雙曲線的漸近線方程為C.點P到兩漸近線的距離的乘積為D.若PF1⊥PF2,則△PF1F2的面積為322.設(shè),則有()A. B.C. D.3.在棱長為1的正四面體中,點滿足,點滿足,當(dāng)和的長度都為最短時,的值是()A. B.C. D.4.已知函數(shù),其導(dǎo)函數(shù)的圖象如圖所示,則()A.在上為減函數(shù) B.在處取極小值C.在上為減函數(shù) D.在處取極大值5.下面三種說法中,正確說法的個數(shù)為()①如果兩個平面有三個公共點,那么這兩個平面重合;②兩條直線可以確定一個平面;③若,,,則A.1 B.2C.3 D.06.已知圓柱的表面積為定值,當(dāng)圓柱的容積最大時,圓柱的高的值為()A.1 B.C. D.27.若拋物線x=﹣my2的焦點到準(zhǔn)線的距離為2,則m=()A.﹣4 B.C. D.±8.若方程表示雙曲線,則()A. B.C. D.9.設(shè)AB是橢圓()的長軸,若把AB一百等分,過每個分點作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F(xiàn)1為橢圓的左焦點,則的值是()A. B.C. D.10.已知,表示兩條不同的直線,表示平面.下列說法正確的是A.若,,則B.若,,則C.若,,則D.若,,則11.已知直四棱柱的棱長均為,則直線與側(cè)面所成角的正切值為()A. B.C. D.12.已知等比數(shù)列滿足,,則()A.21 B.42C.63 D.84二、填空題:本題共4小題,每小題5分,共20分。13.如圖的形狀出現(xiàn)存南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最一上層有1個球,第二層有3個球,第三層有6個球……,設(shè)從上至下各層球數(shù)構(gòu)成一個數(shù)列則___________.(填數(shù)字)14.若,,,四點中恰有三點在橢圓上,則橢圓C的方程為________.15.已知函數(shù),則曲線在點處的切線方程為______.16.設(shè),則曲線在點處的切線的傾斜角是_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為矩形,平面平面,.(1)證明:平面平面;(2)若,為棱的中點,,,求二面角的余弦值18.(12分)已知拋物線的焦點為,直線與拋物線的準(zhǔn)線交于點,為坐標(biāo)原點,(1)求拋物線的方程;(2)直線與拋物線交于,兩點,求的面積19.(12分)如圖,第1個圖形需要4根火柴,第2個圖形需要7根火柴,,設(shè)第n個圖形需要根火柴(1)試寫出,并求;(2)記前n個圖形所需的火柴總根數(shù)為,設(shè),求數(shù)列的前n項和20.(12分)已知二次函數(shù),令,解得.(1)求二次函數(shù)的解析式;(2)當(dāng)關(guān)于的不等式恒成立時,求實數(shù)的范圍.21.(12分)已知:,,:,,且為真命題,求實數(shù)的取值范圍.22.(10分)如圖,點分別在射線,上運動,且(1)求;(2)求線段的中點M的軌跡C的方程;(3)直線與,軌跡C及自上而下依次交于D,E,F(xiàn),G四點,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)雙曲線的離心率、漸近線、點到直線距離公式、三角形的面積等知識來確定正確答案.【詳解】由題意可知,a=3,b=4,c=5,,故離心率e,故A正確;由雙曲線的性質(zhì)可知,雙曲線線的漸近線方程為y=±x,故B正確;設(shè)P(x,y),則P到兩漸近線的距離之積為,故C正確;若PF1⊥PF2,則△PF1F2是直角三角形,由勾股定理得,由雙曲線的定義可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D錯誤.故選:D2、A【解析】利用作差法計算與比較大小即可求解.【詳解】因為,,所以,所以,故選:A.3、A【解析】根據(jù)給定條件確定點M,N的位置,再借助空間向量數(shù)量積計算作答.【詳解】因,則,即,而,則共面,點M在平面內(nèi),又,即,于是得點N在直線上,棱長為1的正四面體中,當(dāng)長最短時,點M是點A在平面上的射影,即正的中心,因此,,當(dāng)長最短時,點N是點D在直線AC上的射影,即正邊AC的中點,,而,,所以.故選:A4、C【解析】首先利用導(dǎo)函數(shù)的圖像求和的解,進而得到函數(shù)的單調(diào)區(qū)間和極值點.【詳解】由導(dǎo)函數(shù)的圖象可知:當(dāng)時,或;當(dāng)時,或,所以的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為和,故在處取得極大值,在處取得極小值,在處取得極大值.故選:C.5、A【解析】對于①,有兩種情況,對于②考慮異面直線,對于③根據(jù)線面公理可判斷.【詳解】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,故①不正確;兩條異面直線不能確定一個平面,故②不正確;若,,,可知必在交線上,則,故③正確;綜上所述只有一個說法是正確的.故選:A6、B【解析】設(shè)圓柱的底面半徑為,則圓柱底,圓柱側(cè),則可得,則圓柱的體積為,利用導(dǎo)數(shù)求出最大值,確定值.【詳解】設(shè)圓柱的底面半徑為,則圓柱底,圓柱側(cè),∴,∴,則圓柱的體積,∴,由得,由得,∴當(dāng)時,取極大值,也是最大值,即故選:B【點睛】本題主要考查了圓柱表面積和體積的計算,考查了導(dǎo)數(shù)的實際應(yīng)用,考查了學(xué)生的應(yīng)用意識.7、D【解析】把拋物線的方程化為標(biāo)準(zhǔn)方程,由焦點到準(zhǔn)線的距離為,即可得到結(jié)果,得到答案.【詳解】由題意,拋物線,可得,又由拋物線的焦點到準(zhǔn)線的距離為2,即,解得.故選D.【點睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,以及簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記拋物線的焦點到準(zhǔn)線的距離為是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.8、C【解析】根據(jù)曲線方程表示雙曲線方程有,即可求參數(shù)范圍.【詳解】由題設(shè),,可得.故選:C.9、D【解析】根據(jù)橢圓的定義,寫出,可求出的和,又根據(jù)關(guān)于縱軸成對稱分布,得到結(jié)果詳解】設(shè)橢圓右焦點為F2,由橢圓的定義知,2,,,由題意知,,,關(guān)于軸成對稱分布,又,故所求的值為故選:D10、B【解析】A.運用線面平行的性質(zhì),結(jié)合線線的位置關(guān)系,即可判斷;B.運用線面垂直的性質(zhì),即可判斷;C.運用線面垂直的性質(zhì),結(jié)合線線垂直和線面平行的位置即可判斷;D.運用線面平行的性質(zhì)和線面垂直的判定,即可判斷【詳解】A.若m∥α,n∥α,則m,n相交或平行或異面,故A錯;B.若m⊥α,,由線面垂直的性質(zhì)定理可知,故B正確;C.若m⊥α,m⊥n,則n∥α或n?α,故C錯;D.若m∥α,m⊥n,則n∥α或n?α或n⊥α,故D錯故選B【點睛】本題考查空間直線與平面的位置關(guān)系,考查直線與平面的平行、垂直的判斷與性質(zhì),記熟定理是解題的關(guān)鍵,注意觀察空間的直線與平面的模型11、D【解析】根據(jù)題意把直線與側(cè)面所成角的正切值轉(zhuǎn)化為在直角三角形中的正切值,即可求出答案.【詳解】由題意可知直四棱柱如下圖所示:取的中點設(shè)為點,連接,在直四棱柱中,面,面,,在四邊形中,,,故且.面,面,面,.故直線與側(cè)面所成角的正切值為.故選:D.12、D【解析】設(shè)等比數(shù)列公比為q,根據(jù)給定條件求出即可計算作答.【詳解】等比數(shù)列公比為q,由得:,即,而,解得,所以.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題中給出的圖形,結(jié)合題意找到各層球的數(shù)列與層數(shù)的關(guān)系,得到,即可得解【詳解】解:由題意可知,,,,,,故,所以,故答案為:14、【解析】由于,關(guān)于軸對稱,故由題設(shè)知C經(jīng)過,兩點,C不經(jīng)過點,然后求出a,b,即可得到橢圓的方程.【詳解】解:由于,關(guān)于軸對稱,故由題設(shè)知經(jīng)過,兩點,所以.又由知,不經(jīng)過點,所以點在上,所以.因此,故方程為.故答案為:.【點睛】求橢圓的標(biāo)準(zhǔn)方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結(jié)合焦點位置可寫出橢圓方程②待定系數(shù)法:若焦點位置明確,則可設(shè)出橢圓的標(biāo)準(zhǔn)方程,結(jié)合已知條件求出,;若焦點位置不明確,則需要分焦點在軸上和軸上兩種情況討論,也可設(shè)橢圓的方程為15、【解析】先求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義求函數(shù)在處的切線方程.【詳解】,,,所以曲線在點處的切線方程為,即.故答案為:【點睛】本題考查導(dǎo)數(shù)的幾何意義,重點考查計算能力,屬于基礎(chǔ)題型.16、【解析】利用導(dǎo)數(shù)的定義,化簡整理,可得,根據(jù)導(dǎo)數(shù)的幾何意義,即可求得答案.【詳解】因為=,所以,則曲線在點處的切線斜率為,即,又所以所求切線的傾斜角為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】分析:(1)由四邊形為矩形,可得,再由已知結(jié)合面面垂直的性質(zhì)可得平面,進一步得到,再由,利用線面垂直的判定定理可得面,即可證得平面;(2)取的中點,連接,以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,由題得,解得.進而求得平面和平面的法向量,利用向量的夾角公式,即可求解二面角的余弦值.詳解:(1)證明:∵四邊形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)設(shè)BC中點為,連接,,又面面,且面面,所以面.以為坐標(biāo)原點,的方向為軸正方向,為單位長,建立如圖所示的空間直角坐標(biāo)系.由(1)知PB⊥平面PCD,故PB⊥,設(shè),可得所以由題得,解得.所以設(shè)是平面的法向量,則,即,可取.設(shè)是平面的法向量,則,即,可取.則,所以二面角的余弦值為.點睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴(yán)密推理,明確角的構(gòu)成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.18、(1)(2)【解析】(1)根據(jù)題意建立關(guān)于的方程,解得的值即可.(2)聯(lián)列方程組并消元,韋達定理整體思想求的長,再求點到直線的距離,進而求面積.【小問1詳解】由題意可得,,則,因為,所以,解得,故拋物線的方程為【小問2詳解】由(1)可知,則點到直線的距離聯(lián)立,整理得設(shè),,則,從而因為直線過拋物線的焦點,所以故的面積為19、(1),;(2).【解析】(1)根據(jù)題設(shè)找到規(guī)律寫出,由等差數(shù)列的定義求.(2)由等差數(shù)列前n項和求,再利用裂項相消法求.【小問1詳解】由題意知:,,,,可得每增加一個正方形,火柴增加3根,即,所以數(shù)列是以4為首項,以3為公差的等差數(shù)列,則.【小問2詳解】由題意可知,,所以,則,所以,,即20、(1);(2).【解析】(1)利用一元二次不等式的解集是,得到-3,2是方程的兩個根,根據(jù)根與系數(shù)之間的關(guān)系,即可求,;(2)根據(jù)題意,得出不等式恒成立,則,解不等式即可求出實數(shù)的范圍.詳解】解:(1)由題可知,,解得:,則-3,2是方程的兩個根,且,所以由根與系數(shù)之間的關(guān)系得,解得,所以二次函數(shù)的解析式為:;(2)由于不等式恒成立,即恒成立,則,解得:,所以實數(shù)的范圍為.【點睛】本題考查由一元二次不等式的解集求函數(shù)解析式,以及不等式恒成立問題求參數(shù)范圍,考查根與系數(shù)的關(guān)系和一元二次函數(shù)的圖象和性質(zhì),考查化簡運算能力21、【解析】由,為真,可得對任意的恒成立,從而分和求出實數(shù)的取值范圍,再由,,可得關(guān)于的方程有實根,則有,從而可求出實數(shù)的取值范圍,然后求交集可得結(jié)果【詳解】解:可化為.若:,為真,則對任意的恒成立.當(dāng)時,不等式可化為,顯然不恒成立,當(dāng)時,有且,所以.①若:,為真,則關(guān)于的方程有實根,所以,即,所以或.②又為真命題,故,均為真命題.所以由①②可得的取值范圍為.22、(1)2(2)(3)證明見詳解【解析】(1)用兩點間的距

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論