版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆廣東省東莞市達標(biāo)名校高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知f(x)是定義在R上的偶函數(shù),當(dāng)時,,且f(-1)=0,則不等式的解集是()A. B.C. D.2.按照小李的閱讀速度,他看完《三國演義》需要40個小時.2021年12月20日,他開始閱讀《三國演義》,當(dāng)天他讀了20分鐘,從第二天開始,他每天閱讀此書的時間比前一天增加10分鐘,則他恰好讀完《三國演義》的日期為()A.2022年1月8日 B.2022年1月9日C.2022年1月10日 D.2022年1月11日3.求點關(guān)于x軸的對稱點的坐標(biāo)為()A. B.C. D.4.經(jīng)過點且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.5.已知直線與直線垂直,則()A. B.C. D.36.在等比數(shù)列中,,,則等于()A.90 B.30C.70 D.407.下列說法正確的是()A.空間中的任意三點可以確定一個平面B.四邊相等的四邊形一定是菱形C.兩條相交直線可以確定一個平面D.正四棱柱的側(cè)面都是正方形8.某中學(xué)舉行黨史學(xué)習(xí)教育知識競賽,甲隊有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時現(xiàn)場從中隨機抽出名選手答題,則至少有名女同學(xué)被選中的概率是()A. B.C. D.9.若函數(shù)的圖象如圖所示,則函數(shù)的導(dǎo)函數(shù)的圖象可能是()A. B.C D.10.已知的周長等于10,,通過建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,頂點的軌跡方程可以是()A. B.C. D.11.已知定義在R上的函數(shù)滿足,且有,則的解集為()A. B.C. D.12.中,內(nèi)角A,B,C的對邊分別為a,b,c,若,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為三角形的一個內(nèi)角,已知曲線:,則可能是___________.(寫出不同曲線的名稱,盡可能多.注:在一些問題情景中,直線可以理解成是特殊的曲線)14.已知函數(shù)有兩個極值點,則實數(shù)a的取值范圍為________.15.已知點和,圓,當(dāng)圓C與線段沒有公共點時,則實數(shù)m的取值范圍為___________16.設(shè),若直線與直線平行,則的值是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列的前項和為,,.?dāng)?shù)列的前項和為,且,(1)分別求數(shù)列和的通項公式;(2)若,為數(shù)列的前項和,是否存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列?若存在,求出所有滿足條件的,,的值;若不存在,說明理由18.(12分)已知命題p為“方程沒有實數(shù)根”,命題q為“”.(1)若p為真命題,求m的取值范圍;(2)若p和q有且只有一個為真命題,求m的取值范圍.19.(12分)已知等差數(shù)列的前n項和為,且,(1)求數(shù)列的通項公式;(2)若,求k的值20.(12分)已知正項等比數(shù)列的前項和為,滿足,.記.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列前項和,求使得不等式成立的的最小值.21.(12分)已知數(shù)列是公差不為0的等差數(shù)列,首項,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列滿足,求數(shù)列的前n項和22.(10分)已知數(shù)列滿足各項均不為0,,且,.(1)證明:為等差數(shù)列,并求的通項公式;(2)令,,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意可知,當(dāng)時,,即函數(shù)在上單調(diào)遞增,再結(jié)合函數(shù)f(x)的奇偶性得到函數(shù)的奇偶性,并根據(jù)奇偶性得到單調(diào)性,進而解得答案.【詳解】由題意,當(dāng)時,,則函數(shù)在上單調(diào)遞增,而f(x)是定義在R上的偶函數(shù),容易判斷是定義在上的奇函數(shù),于是在上單調(diào)遞增,而f(-1)=0,則.于是當(dāng)時,.故選:D.2、B【解析】由等差數(shù)列前n項和列不等式求解即可.【詳解】由題知,每天的讀書時間為等差數(shù)列,首項為20,公差為10,記n天讀完.則40小時=2400分鐘,令,得或(舍去),故,即第21天剛好讀完,日期為2022年1月9日.故選:B3、D【解析】根據(jù)點關(guān)于坐標(biāo)軸的對稱點特征,直接寫出即可.【詳解】A點關(guān)于x軸對稱點,橫坐標(biāo)不變,縱坐標(biāo)與豎坐標(biāo)為原坐標(biāo)的相反數(shù),故點的坐標(biāo)為,故選:D4、C【解析】共漸近線的雙曲線方程,設(shè),把點代入方程解得參數(shù)即可.【詳解】設(shè),把點代入方程解得參數(shù),所以化簡得方程故選:C.5、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.6、D【解析】根據(jù)等比數(shù)列的通項公式即可求出答案.【詳解】設(shè)該等比數(shù)列的公比為q,則,則.故選:D7、C【解析】根據(jù)立體幾何相關(guān)知識對各選項進行判斷即可.【詳解】對于A,根據(jù)公理2及推論可知,不共線的三點確定一個平面,故A錯誤;對于B,在一個平面內(nèi),四邊相等的四邊形才一定是菱形,故B錯誤;對于C,根據(jù)公理2及推論可知,兩條相交直線可以確定一個平面,故C正確;對于D,正四棱柱指上、下底面都是正方形且側(cè)棱垂直于底面的棱柱,側(cè)面可以是矩形,故D錯誤.故選:C8、D【解析】現(xiàn)場選名選手,共種情況,設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況,共有6種,利用對立事件進行求解,即可得到答案;【詳解】現(xiàn)場選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況是:,,,,,共種,則至少有一名女同學(xué)被選中的概率為.故選:.9、C【解析】由函數(shù)的圖象可知其單調(diào)性情況,再由導(dǎo)函數(shù)與原函數(shù)的關(guān)系即可得解.【詳解】由函數(shù)的圖象可知,當(dāng)時,從左向右函數(shù)先增后減,故時,從左向右導(dǎo)函數(shù)先正后負,故排除AB;當(dāng)時,從左向右函數(shù)先減后增,故時,從左向右導(dǎo)函數(shù)先負后正,故排除D.故選:C.10、A【解析】根據(jù)橢圓的定義進行求解即可.【詳解】因為的周長等于10,,所以,因此點的軌跡是以為焦點的橢圓,且不在直線上,因此有,所以頂點的軌跡方程可以是,故選:A11、A【解析】構(gòu)造,應(yīng)用導(dǎo)數(shù)及已知條件判斷的單調(diào)性,而題設(shè)不等式等價于即可得解.【詳解】設(shè),則,∴R上單調(diào)遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A.12、A【解析】由題得,進而根據(jù)余弦定理求解即可.【詳解】解:依題意,即,所以,所以,由于,所以故選:A二、填空題:本題共4小題,每小題5分,共20分。13、焦點在軸上的橢圓,焦點在軸上的雙曲線,兩條直線.【解析】討論,和三種情況,進而根據(jù)曲線方程的特征得到答案.【詳解】若,則曲線:,而,曲線表示焦點在y軸上的橢圓;若,則曲線:或,曲線表示兩條直線;若,則曲線:,而,曲線表示焦點在x軸上的雙曲線.故答案為:焦點在y軸上橢圓,焦點在x軸上的雙曲線,兩條直線.14、【解析】由題可得有兩個不同正根,利用分離參數(shù)法得到.令,,只需和有兩個交點,利用導(dǎo)數(shù)研究的單調(diào)性與極值,數(shù)形結(jié)合即得.【詳解】∵的定義域為,,要使函數(shù)有兩個極值點,只需有兩個不同正根,并且在的兩側(cè)的單調(diào)性相反,在的兩側(cè)的單調(diào)性相反,由得,,令,,要使函數(shù)有兩個極值點,只需和有兩個交點,∵,令得:0<x<1;令得:x>1;所以在上單調(diào)遞增,在上單調(diào)遞減,當(dāng)時,;當(dāng)時,;作出和的圖像如圖,所以,即,即實數(shù)a的取值范圍為.故答案為:15、【解析】當(dāng)點和都在圓的內(nèi)部時,結(jié)合點與圓的位置關(guān)系得出實數(shù)m的取值范圍,再由圓心到直線的距離大于半徑得出實數(shù)m的取值范圍.【詳解】當(dāng)點和都在圓的內(nèi)部時,,解得或直線的方程為,即圓心到直線的距離為,當(dāng)圓心到直線的距離大于半徑時,,且.綜上,實數(shù)m的取值范圍為.故答案為:16、【解析】先通過討論分成斜率存在和不存在兩種情況,然后再按照兩直線平行的判定方法求解即可.【詳解】由已知可得,當(dāng)時,兩直線分別為和,此時,兩直線不平行;當(dāng)時,要使得兩直線平行,即,解得,.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)不存在,理由見解析.【解析】(1)利用數(shù)列為等比數(shù)列,將已知的等式利用首項和公比表示,得到一個方程組,求解即可得到首項和公比,結(jié)合等比數(shù)列的通項公式即可求出;將已知的等式變形,得到數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求出,再結(jié)合數(shù)列的第項與前項和之間的關(guān)系進行求解,即可得到;(2)先利用等比數(shù)列求和公式求出,從而得到的表達式,然后利用裂項相消求和法求出,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,利用等比中項、等差中項以及進行化簡變形,得到假設(shè)不成立,故可得到答案【詳解】(1)因為數(shù)列為等比數(shù)列,設(shè)首項為,公比為,由題意可知,所以,所以,由②可得,即,所以或2,因為,所以,所以,所以,由,可得,所以數(shù)列為等差數(shù)列,首項為,公差為1,故,則,當(dāng)時,,當(dāng)時,也適合上式,故(2)由,可得,所以,所以,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,則有,所以,則,即,因為,所以,即,所以,所以,則,所以,則,所以,即,所以,這與已知的,,互不相等矛盾,故不存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列【點睛】裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.18、(1)(2)【解析】(1)方程無根,利用根的判別式小于0求出m的取值范圍;(2)和有且只有一個為真命題,分兩種情況進行求解,最終求出結(jié)果.【小問1詳解】由方程沒有實數(shù)根,得,解得:.所以m的取值范圍為.【小問2詳解】和有且只有一個為真命題,分為下列兩種情況:①當(dāng)真且假時,且,得;②當(dāng)假且真時,且,得.所以,的取值范圍為.19、(1)(2)10【解析】(1)設(shè)等差數(shù)列的公差為d,利用已知建立方程組,解之可求得數(shù)列的通項公式;(2)利用等差數(shù)列的前項和公式,化簡即可求解.【小問1詳解】解:設(shè)等差數(shù)列的公差為d,由已知,,得,解得,則;小問2詳解】解:由(1)得,則由,得或(舍去),所以的值為10.20、(1),.(2)5.【解析】(1)根據(jù)數(shù)列的遞推公式探求出其項間關(guān)系,由此求出的公比,進而求得,的通項公式.(2)利用(1)的結(jié)論結(jié)合錯位相減法求出,再將不等式變形,經(jīng)推理計算得解.【小問1詳解】解:設(shè)正項等比數(shù)列的公比為,當(dāng)時,,即,則有,即,而,解得,又,則,所以,所以數(shù)列,的通項公式分別為:,.【小問2詳解】解:由(1)知,,則,則,兩式相減得:于是得,由得:,即,令,,顯然,,,,,,由,解得,即數(shù)列在時是遞增的,于是得當(dāng)時,即,,則,所以不等式成立的n的最小值是5.21、(1);(2)【解析】(1)設(shè)數(shù)列的公差為d,根據(jù)等比中項的概念即可求出公差,再根據(jù)等差數(shù)列的通
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 道路巡視養(yǎng)護工安全生產(chǎn)基礎(chǔ)知識測試考核試卷含答案
- 井下膠輪車司機班組協(xié)作強化考核試卷含答案
- 電子絕緣與介質(zhì)材料制造工安全規(guī)程強化考核試卷含答案
- 輕烴裝置操作工崗前節(jié)能考核試卷含答案
- 2025年慈溪事業(yè)單位真題
- 焊材配拌粉工操作管理強化考核試卷含答案
- 熔煉澆注工崗前規(guī)章考核試卷含答案
- 混合氣潛水員安全知識競賽測試考核試卷含答案
- 烏鴉跨物種合作協(xié)議書
- 模型開發(fā)師班組安全能力考核試卷含答案
- 低空經(jīng)濟 項目計劃書
- 年產(chǎn)3萬噸有機肥生產(chǎn)線新建項目可行性研究報告
- 2025-2030中國保溫杯行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 杜絕公職人員信仰宗教專項行動工作的實施方案
- 營銷費用核算管理制度
- 智慧樹知到《中國歷史地理(北京大學(xué))》期末考試答案
- 原油儲存建設(shè)項目可行性研究報告
- 2025人教版八年級上冊數(shù)學(xué)教學(xué)計劃實踐活動安排
- 畢業(yè)生離校聚會安全應(yīng)急預(yù)案
- 統(tǒng)編版2024-2025學(xué)年三年級上冊語文期末情景檢測試卷(含答案)
- 醫(yī)療機構(gòu)衛(wèi)生計生監(jiān)督協(xié)管巡查記錄
評論
0/150
提交評論