版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆江蘇省南通市通州海安高二上數(shù)學(xué)期末統(tǒng)考試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在棱長為2的正方體中,點P在截面上(含邊界),則線段的最小值等于()A. B.C. D.2.已知O為坐標(biāo)原點,=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當(dāng)取得最小值時,點Q的坐標(biāo)為()A. B.C. D.3.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺4.若且,則下列選項中正確的是()A B.C. D.5.經(jīng)過點且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.6.設(shè)命題,,則為()A., B.,C., D.,7.如圖,在四面體中,,,,分別為,,,的中點,則化簡的結(jié)果為()A. B.C. D.8.若直線與平行,則m的值為()A.-2 B.-1或-2C.1或-2 D.19.命題任意圓的內(nèi)接四邊形是矩形,則為()A.每一個圓的內(nèi)接四邊形是矩形B.有的圓的內(nèi)接四邊形不是矩形C.所有圓的內(nèi)接四邊形不是矩形D.存在一個圓的內(nèi)接四邊形是矩形10.已知命題:,使;命題:,都有,則下列結(jié)論正確的是()A.命題“”是真命題: B.命題“”是假命題:C.命題“”是假命題: D.命題“”是假命題11.已知函數(shù),其中e是自然數(shù)對數(shù)的底數(shù),若,則實數(shù)a的取值范圍是A. B.C. D.12.函數(shù),則不等式的解集是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則_________14.橢圓上一點到兩個焦點的距離之和等于,則的標(biāo)準(zhǔn)方程為______.15.設(shè)O為坐標(biāo)原點,F(xiàn)為雙曲線的焦點,過F的直線l與C的兩條漸近線分別交于A,B兩點.若,且的內(nèi)切圓的半徑為,則C的離心率為____________16.兩個人射擊,互相獨立.已知甲射擊一次中靶概率是0.6,乙射擊一次中靶概率是0.3,現(xiàn)在兩人各射擊一次,中靶至少一次就算完成目標(biāo),則完成目標(biāo)的概率為_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知:圓是的外接圓,邊所在直線的方程為,中線所在直線的方程為,直線與圓相切于點.(1)求點和點的坐標(biāo);(2)求圓的方程.18.(12分)圓的圓心為,且與直線相切,求:(1)求圓的方程;(2)過的直線與圓交于,兩點,如果,求直線的方程19.(12分)已知橢圓過點,離心率.(1)求橢圓的方程;(2)設(shè)直線與橢圓相交于A、B兩點,求.20.(12分)已知首項為1的等比數(shù)列,滿足(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和21.(12分)直線經(jīng)過點,且與圓相交與兩點,截得的弦長為,求的方程.22.(10分)已知曲線上任意一點滿足方程,(1)求曲線的方程;(2)若直線與曲線在軸左、右兩側(cè)的交點分別是,且,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長為2,則,,設(shè)到平面的距離為,由得,解得故選:B2、C【解析】設(shè),用表示出,求得的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)求得當(dāng)時,取得最小值,從而求得點的坐標(biāo).【詳解】設(shè),則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當(dāng)λ=時,取得最小值,此時==,即點Q的坐標(biāo)為.故選:C3、A【解析】由題意可知,十二個節(jié)氣其日影長依次成等差數(shù)列,設(shè)冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項公式,求出,即可求出,從而得到答案【詳解】設(shè)從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設(shè)公差為尺.由題可知,所以,,,,故選:A4、C【解析】對于A,作商比較,對于B,利用基本不等式的推廣式判斷,對于C,利用在單位圓中,內(nèi)接正邊形的面積小于內(nèi)接正邊形的面積判斷,對于D,利用放縮法判斷【詳解】,故錯誤;,故錯誤;在單位圓中,內(nèi)接正邊形的面積小于內(nèi)接正邊形的面積(必修三閱讀材料割圓術(shù)),則,故正確;,故錯誤故選:C【點睛】關(guān)鍵點點睛:此題考查不等式的綜合應(yīng)用,考查基本不等式的推廣式的應(yīng)用,考查放縮法的應(yīng)用,對于C項解題的關(guān)鍵是利用了在單位圓中,內(nèi)接正邊形的面積小于內(nèi)接正邊形的面積求解,考查數(shù)學(xué)轉(zhuǎn)化思想,屬于難題5、C【解析】共漸近線的雙曲線方程,設(shè),把點代入方程解得參數(shù)即可.【詳解】設(shè),把點代入方程解得參數(shù),所以化簡得方程故選:C.6、B【解析】全稱命題的否定時特稱命題,把任意改為存在,把結(jié)論否定.【詳解】命題,,則為“,”.故選:B7、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C8、C【解析】利用兩直線平行的判定有,即可求參數(shù)值.【詳解】由題設(shè),,可得或.經(jīng)驗證不重合,滿足題意,故選:C.9、B【解析】全稱命題的否定特稱命題,任意改為存在,把結(jié)論否定.【詳解】全稱量詞命題的否定是特稱命題,需要將全稱量詞換為存在量詞,答案A,C不符合題意,同時對結(jié)論進(jìn)行否定,所以:有的圓的內(nèi)接四邊形不是矩形,故選:B.10、B【解析】根據(jù)正弦函數(shù)的性質(zhì)判斷命題為假命題,由判斷命題為真命題,從而得出答案.【詳解】因為的值域為,所以命題為假命題因為,所以命題為真命題則命題“”是假命題,命題“”是假命題,命題“”是真命題,命題“”是真命題故選:B11、B【解析】利用函數(shù)的奇偶性將函數(shù)轉(zhuǎn)化為f(M)≤f(N)的形式,再利用單調(diào)性脫去對應(yīng)法則f,轉(zhuǎn)化為一般的二次不等式求解即可【詳解】由于,,則f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函數(shù)f(x)為奇函數(shù)故原不等式f(a﹣1)+f(2a2)≤0,可轉(zhuǎn)化為f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函數(shù)f(x)單調(diào)遞增,則由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故選B【點睛】本題考查了函數(shù)的奇偶性和單調(diào)性的判定及應(yīng)用,考查了不等式的解法,屬于中檔題12、A【解析】利用導(dǎo)數(shù)判斷函數(shù)單調(diào)遞增,然后進(jìn)行求解.【詳解】對函數(shù)進(jìn)行求導(dǎo):,因為,,所以,因為,所以f(x)是奇函數(shù),所以在R上單調(diào)遞增,又因為,所以的解集為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出函數(shù)的導(dǎo)數(shù),再令,即可得出答案.【詳解】解:由,得,所以.故答案為:.14、【解析】根據(jù)橢圓定義求出其長半軸長,再結(jié)合焦點坐標(biāo)即可計算作答.【詳解】因橢圓上一點到兩個焦點的距離之和等于,則該橢圓長半軸長,而半焦距,于是得短半軸長b,有,所以的標(biāo)準(zhǔn)方程為.故答案為:15、##【解析】,作出漸近線圖像,由題可知的內(nèi)切圓圓心在x軸上,過內(nèi)心作OA和AB的垂線,可得幾何關(guān)系,據(jù)此即可求解.【詳解】雙曲線漸近線OA與OB如圖所示,OA與OB關(guān)于x軸對稱,設(shè)△OAB的內(nèi)切圓圓心為,則M在的平分線上,過點分別作于點于,由,則四邊形為正方形,由焦點到漸近線的距離為得,又,∴,且,∴,∴,則.故答案為:.16、72【解析】利用獨立事件的概率乘法公式和對立事件的概率公式可求得所求事件的概率.【詳解】由題意可知,若甲、乙兩個各射擊1次,至少有一人命中目標(biāo)的概率為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)A(1,7),(2)【解析】(1)與的的交點為點D,與的的交點為點A,聯(lián)立解方程即可得出結(jié)果.(2)設(shè)圓P的圓心P為,由,,計算求解即可得出點坐標(biāo),由求得半徑,進(jìn)而可得出圓的方程.【小問1詳解】由題可得:與的的交點為點D,故由,解得:,故與的的交點為點A,,解得:,故A(1,7)【小問2詳解】設(shè)圓P的圓心P為,由與圓相切于點A,且的斜率為,則即,即,①又圓P為的外接圓,則BC為圓P的弦,又邊BC所在直線的科率為,故根據(jù)垂徑定理,有進(jìn)而,即②,聯(lián)立①②,解得:,即故,則圓P的方程為:.18、(1)(2)或【解析】由點到直線的距離公式求得圓的半徑,則圓的方程可求;當(dāng)直線的斜率不存在時,求得弦長為,滿足題意;當(dāng)直線的斜率不存在時,設(shè)出直線方程,求出圓心到直線的距離,再由垂徑定理列式求,則直線方程可求【小問1詳解】由題意得:圓的半徑為,則圓的方程為;【小問2詳解】當(dāng)直線的斜率不存在時,直線方程為,得,符合題意;當(dāng)直線的斜率存在時,設(shè)直線方程為,即圓心到直線的距離,則,解得直線的方程為直線的方程為或19、(1);(2).【解析】(1)根據(jù)題意得,,再結(jié)合即可求得答案.(2)設(shè),,直接聯(lián)立方程得,再結(jié)合韋達(dá)定理,利用弦長公式和點到線的距離公式得,點M到直線的距離,進(jìn)而可得.【詳解】解:(1)由題意得,,結(jié)合,解得所以橢圓的方程為:.(2)由得即,經(jīng)驗證.設(shè),.所以,,故因為點M到直線的距離,所以.【點睛】本題考查直線與橢圓位置關(guān)系,橢圓的方程,弦長公式等,考查運算能力,是基礎(chǔ)題.20、(1)(2)【解析】(1)根據(jù)已知條件求得數(shù)列的公比,由此求得.(2)利用錯位相減求和法求得.【小問1詳解】設(shè)等比數(shù)列的公比為,由,可得.故數(shù)列是以1為首項,3為公比的等比數(shù)列,所以【小問2詳解】由(1)得,,①,②①②,得所以21、或【解析】直線截圓得的弦長為,結(jié)合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點到直線的距離公式列方程求出直線斜率,由點斜式可得結(jié)果.【詳解】設(shè)直線的方程為,即,因為圓的半徑為5,截得的弦長為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點睛】本題主要考查點到直線距離公式以及圓的弦長的求法,求圓的弦長有兩種方法:一是利用弦長公式,結(jié)合韋達(dá)定理求解;二是利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年大興安嶺職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試備考試題有答案解析
- 2026年廣州衛(wèi)生職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試模擬試題帶答案解析
- 2026年承德應(yīng)用技術(shù)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性考試備考試題帶答案解析
- 汽車修理廠應(yīng)急預(yù)案演練計劃、方案、總結(jié)
- 個人績效考核自評報告
- 燃?xì)庑孤稇?yīng)急演練計劃方案
- ?;沸孤断缿?yīng)急預(yù)案演練方案
- 2026年安全員A證考試試題試卷(含答案)
- 平安校園建設(shè)實施方案和工作措施
- 老舊小區(qū)綜合改造項目施工方案與技術(shù)措施
- 【高三上】廣東省華師聯(lián)盟2026屆高三12月質(zhì)量檢測語文試題含答案
- 2025年廣州市花都區(qū)花東鎮(zhèn)人民政府公開招聘執(zhí)法輔助工作人員備考題庫帶答案詳解
- 小學(xué)生用電安全知識課件
- 2026年收益分成協(xié)議
- 肝癌TACE治療課件
- 2022年-2024年青島衛(wèi)健委事業(yè)編中醫(yī)筆試真題
- JJG(交通) 070-2006 混凝土超聲檢測儀
- 合作銷售礦石協(xié)議書
- 2025上海初三各區(qū)一模、二模作文題、主題歸納及審題分析指導(dǎo)
- 圍手術(shù)期心肌梗塞的護(hù)理
- 2025-2026學(xué)年蘇教版(2024)小學(xué)科學(xué)二年級上冊期末測試卷附答案(共三套)
評論
0/150
提交評論