版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省中山市紀念中學(xué)2026屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)集合,,則()A B.C. D.2.某幾何體的正視圖和側(cè)視圖均為如圖1所示,則在圖2的四個圖中可以作為該幾何體的俯視圖的是A.(1),(3) B.(1),(4)C.(2),(4) D.(1),(2),(3),(4)3.方程的所有實數(shù)根組成的集合為()A. B.C. D.4.下列四組函數(shù)中,表示同一個函數(shù)的一組是()A.,B.,C.,D.,5.1弧度的圓心角所對的弧長為6,則這個圓心角所夾的扇形的面積是()A.3 B.6C.18 D.366.已知,則()A. B.1C. D.27.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.若,則它是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角9.我國著名數(shù)學(xué)家華羅庚曾說過:“數(shù)缺形時少直觀,形少數(shù)時難入微;數(shù)形結(jié)合百般好,隔離分家萬事休”.在數(shù)學(xué)學(xué)習(xí)中和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)圖象的特征,如函數(shù)的大致圖象是()A. B.C. D.10.設(shè)函數(shù)對的一切實數(shù)均有,則等于A.2016 B.-2016C.-2017 D.2017二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),R的圖象與軸無公共點,求實數(shù)的取值范圍是_________.12.不等式的解集為_____13.函數(shù)是定義在上的奇函數(shù),當時,,則______14.設(shè)平行于軸的直線分別與函數(shù)和的圖像相交于點,,若在函數(shù)的圖像上存在點,使得為等邊三角形,則點的縱坐標為_________.15.已知函數(shù),且函數(shù)恰有兩個不同零點,則實數(shù)的取值范圍是___________.16.函數(shù)的單調(diào)遞減區(qū)間為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知非空數(shù)集,設(shè)為集合中所有元素之和,集合是由集合的所有子集組成的集合(1)若集合,寫出和集合;(2)若集合中的元素都是正整數(shù),且對任意的正整數(shù)、、、、,都存在集合,使得,則稱集合具有性質(zhì)①若集合,判斷集合是否具有性質(zhì),并說明理由;②若集合具有性質(zhì),且,求的最小值及此時中元素的最大值的所有可能取值18.已知函數(shù),其中.(1)求函數(shù)的定義域;(2)若函數(shù)的最大值為2.求a的值.19.如圖,在四棱錐中,平面,,為棱上一點.(1)設(shè)為與的交點,若,求證:平面;(2)若,求證:20.已知函數(shù)是定義在上的奇函數(shù),且.(1)確定函數(shù)的解析式并用定義證明在上是增函數(shù)(2)解不等式:.21.已知函數(shù),若函數(shù)的圖象過點,(1)求的值;(2)若,求實數(shù)的取值范圍;(3)若函數(shù)有兩個零點,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用集合的交集運算求解.【詳解】因為集合,,所以,故選:C2、A【解析】可以是一個正方體上面一個球,也可以是一個圓柱上面一個球3、C【解析】首先求出方程的解,再根據(jù)集合的表示方法判斷即可;【詳解】解:由,解得或,所以方程的所有實數(shù)根組成的集合為;故選:C4、B【解析】根據(jù)相等函數(shù)的判定方法,逐項判斷,即可得出結(jié)果.【詳解】A選項,因為的定義域為,的定義域為,定義域不同,不是同一函數(shù),故A錯;B選項,因為的定義域為,的定義域也為,且與對應(yīng)關(guān)系一致,是同一函數(shù),故B正確;C選項,因為的定義域為,的定義域為,定義域不同,不是同一函數(shù),故C錯;D選項,因為的定義域為,的定義域為,定義域不同,不是同一函數(shù),故D錯.故選:B.5、C【解析】由弧長的定義,可求得扇形的半徑,再由扇形的面積公式,即可求解.【詳解】由1弧度的圓心角所對的弧長為6,利用弧長公式,可得,即,所以扇形的面積為.故選C.【點睛】本題主要考查了扇形的弧長公式和扇形的面積公式的應(yīng)用,著重考查了計算能力,屬于基礎(chǔ)題.6、D【解析】根據(jù)指數(shù)和對數(shù)的關(guān)系,將指數(shù)式化為對數(shù)式,再根據(jù)換底公式及對數(shù)的運算法則計算可得;【詳解】解:,,,,故選:D7、C【解析】根據(jù)三角函數(shù)表,在三角形中,當時,即可求解【詳解】在三角形中,,故在三角形中,“”是“”的充分必要條件故選:C【點睛】本題考查充要條件的判斷,屬于基礎(chǔ)題8、C【解析】根據(jù)象限角的定義判斷【詳解】因為,所以是第三象限角故選:C9、A【解析】先判斷函數(shù)的奇偶性,再根據(jù)特殊點的函數(shù)值選出正確答案.【詳解】對于,∵,∴為偶函數(shù),圖像關(guān)于y軸對稱,排除D;由,排除B;由,排除C.故選:A.【點睛】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象10、B【解析】將換成再構(gòu)造一個等式,然后消去,得到的解析式,最后可求得【詳解】①②①②得,故選:【點睛】本題考查求解析式的一種特殊方法:方程組法.如已知,求,則由已知得,把和作為未知數(shù),列出方程組可解出.如已知也可以用這種方法求解析式二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】令=t>0,則g(t)=>0對t>0恒成立,即對t>0恒成立,再由基本不等式求出的最大值即可.【詳解】,R,令=t>0,則f(x)=g(t)=,由題可知g(t)在t>0時與橫軸無公共點,則對t>0恒成立,即對t>0恒成立,∵,當且僅當,即時,等號成立,∴,∴.故答案為:.12、【解析】把不等式x2﹣2x>0化為x(x﹣2)>0,求出解集即可【詳解】不等式x2﹣2x>0可化為x(x﹣2)>0,解得x<0或x>2;∴不等式的解集為{x|x<0或x>2}故答案為【點睛】本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目13、11【解析】根據(jù)奇函數(shù)性質(zhì)求出函數(shù)的解析式,然后逐層代入即可.【詳解】,,當時,,即,,,故答案為:11.14、【解析】設(shè)直線的方程為,求得點,坐標,得到,取的中點,連接,根據(jù)三角形為等邊三角形,表示出點坐標,根據(jù)點在函數(shù)的圖象上,得到關(guān)于的方程,求出,進而可得點的縱坐標.【詳解】設(shè)直線的方程為,由,得,所以點,由,得,所以點,從而,如圖,取的中點,連接,因為為等邊三角形,則,所以,,則點,因為點在函數(shù)的圖象上,則,解得,所以點的縱坐標為.故答案為:.【點睛】關(guān)鍵點點睛:求解本題的關(guān)鍵在于先由同一參數(shù)表示出點坐標,再代入求解;本題中,先設(shè)直線,分別求出,坐標,得到等邊三角形的邊長,由此用表示出點坐標,即可求解.15、【解析】作出函數(shù)的圖象,把函數(shù)的零點轉(zhuǎn)化為直線與函數(shù)圖象交點問題解決.【詳解】由得,即函數(shù)零點是直線與函數(shù)圖象交點橫坐標,當時,是增函數(shù),函數(shù)值從1遞增到2(1不能取),當時,是增函數(shù),函數(shù)值為一切實數(shù),在坐標平面內(nèi)作出函數(shù)的圖象,如圖,觀察圖象知,當時,直線與函數(shù)圖象有2個交點,即函數(shù)有2個零點,所以實數(shù)的取值范圍是:.故答案為:16、【解析】利用對數(shù)型復(fù)合函數(shù)性質(zhì)求解即可.【詳解】由題知:,解得或.令,則為減函數(shù).所以,為減函數(shù),為增函數(shù),,為增函數(shù),為減函數(shù).所以函數(shù)的單調(diào)遞減區(qū)間為.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)①有,理由見解析;②的最小值為,所有可能取值是、、、、.【解析】(1)根據(jù)題中定義可寫出與;(2)(i)求得,取、、、、,找出對應(yīng)的集合,使得,即可得出結(jié)論;(ii)設(shè),不妨設(shè),根據(jù)題中定義分析出、,,,,,然后驗證當、、、、時,集合符合題意,即可得解.【小問1詳解】解:由題中定義可得,.【小問2詳解】解:(?。┘暇哂行再|(zhì),理由如下:因為,所以當時,取集合,則;當時,取集合,則;當時,取集合,則;當時,取集合,則;當時,取集合,則;當時,取集合,則;當時,取集合,則;當時,取集合,則;當時,取集合,則;當時,取集合,則;當時,取集合,則;當時,取集合,則;當時,取集合,則;當時,取集合,則;當時,取集合,則;綜上可得,集合具有性質(zhì);(ⅱ)設(shè)集合,不妨設(shè)因為為正整數(shù),所以,因為存在使得,所以此時中不能包含元素、、、且,所以.所以因為存在使得,所以此時中不能包含元素及、、、且,所以,所以若,則、、,而,所以不存在,使得,所以若,則、、,而,所以不存在,使得,所以同理可知,,若,則,所以當時,若,則取,可知不存在,使得,所以,解得又因為,所以經(jīng)檢驗,當、、、、時,集合符合題意所以最小值為,且集合中元素的最大值的所有可能取值是、、、、.【點睛】關(guān)鍵點點睛:本題考查集合的新定義問題,解題時充分抓住題中的新定義,結(jié)合反證法結(jié)合不等式的基本性質(zhì)逐項推導(dǎo),求出每一項的取值范圍,進而求解.18、(1);(2).【解析】(1)根據(jù)對數(shù)的性質(zhì)進行求解即可;(2)根據(jù)對數(shù)的運算性質(zhì),結(jié)合配方法、對數(shù)復(fù)合函數(shù)的單調(diào)性進行求解即可.【詳解】(1)要使函數(shù)有意義,則有,解得,所以函數(shù)的定義域為.(2)函數(shù)可化.因為,所.因,所以,即,由,解得.19、(1)見解析;(2)見解析.【解析】(1)只需證得,即可證得平面;(2)因為平面,平面,所以,即可證得平面,從而得證.試題解析:(1)在與中,因為,所以,又因為,所以在中,有,則.又因為平面,平面,所以平面.(2)因為平面,平面,所以.又因為,平面,平面,,所以平面,平面,所以20、(1),證明見解析(2)【解析】(1)由題意可得,從而可求出,再由,可求出,從而可求出函數(shù)的解析式,然后利用單調(diào)性的定義證明即可,(2)由于函數(shù)為奇函數(shù),所以將轉(zhuǎn)化為,再利用函數(shù)為增函數(shù)可得,從而求得解集【小問1詳解】因為函數(shù)是定義在上的奇函數(shù),所以,即,得,所以,因為,所以,解得,所以,證明:任取,且,則,因為,所以,,,所以,即,所以在上是增函數(shù)【小問2詳解】因為在上為奇函數(shù),所以轉(zhuǎn)化為,因為在上是增函數(shù),所以,解得,所以不等式的解集為21、(1).(2).(3).【解析】(1)由函數(shù)過點,代入函數(shù)即可得的值;(2)由可得的取值范圍;(3)由函數(shù)的大致圖象即可得的取值范圍.試題解析:(1),,,.(2),,.(3)當時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年電氣傳動技術(shù)在水處理中的應(yīng)用
- 2026年建筑電氣設(shè)計中的綠色能源應(yīng)用
- 2026年G技術(shù)在房地產(chǎn)中的創(chuàng)新應(yīng)用前景
- 貨運駕駛員行車安全培訓(xùn)課件
- 檢驗醫(yī)學(xué)新技術(shù)與應(yīng)用
- 婦產(chǎn)科護理要點與急救技術(shù)
- 醫(yī)療機器人輔助手術(shù)的挑戰(zhàn)與機遇
- 2026年廣州城市職業(yè)學(xué)院單招職業(yè)技能筆試備考試題帶答案解析
- 2026年廣州體育職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試參考題庫帶答案解析
- 生物醫(yī)學(xué)光子學(xué)在疾病診斷中的應(yīng)用
- 青海西寧市2024-2025學(xué)年七年級上學(xué)期末調(diào)研測英語試卷
- 2025至2030雙光束紫外可見近紅外分光光度計行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- DB44∕T 2722-2025 公路工程造價管理指南
- 2025四川成都益民集團所屬企業(yè)招聘財務(wù)綜合崗等崗位模擬筆試試題及答案解析
- 政府采購招標代理機構(gòu)自查報告三篇
- 2025年公務(wù)員多省聯(lián)考《申論》(陜西A卷)題及參考答案
- 醫(yī)藥研發(fā)合成工作總結(jié)
- 2025年檢驗科工作總結(jié)及2026年工作計劃6篇
- 放射科X線胸片診斷技術(shù)要點
- 省級課題答辯課件
- 2025年四川省法院書記員招聘考試筆試試題含答案
評論
0/150
提交評論