2026屆廣東湛江市大成中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第1頁
2026屆廣東湛江市大成中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第2頁
2026屆廣東湛江市大成中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第3頁
2026屆廣東湛江市大成中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第4頁
2026屆廣東湛江市大成中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆廣東湛江市大成中學高一數(shù)學第一學期期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設全集U=1,2,3,4,5,6,7,8,9,集合A=2,4,6,8,那么A.9 B.1,3,5,7,9C.1,3,5 D.2,4,62.已知函數(shù)的圖象關于直線對稱,且,則的最小值為()A. B.C. D.3.若關于的方程有且僅有一個實根,則實數(shù)的值為()A3或-1 B.3C.3或-2 D.-14.若集合,則下列選項正確的是()A. B.C. D.5.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知函數(shù)在上是增函數(shù),則的取值范圍是()A. B.C. D.7.在特定條件下,籃球賽中進攻球員投球后,籃球的運行軌跡是開口向下的拋物線的一部分.“蓋帽”是一種常見的防守手段,防守隊員在籃球上升階段將球攔截即為“蓋帽”,而防守隊員在籃球下降階段將球攔截則屬“違規(guī)”.對于某次投籃而言,如果忽略其他因素的影響,籃球處于上升階段的水平距離越長,則被“蓋帽”的可能性越大.收集幾次籃球比賽的數(shù)據(jù)之后,某球員投籃可以簡化為下述數(shù)學模型:如圖所示,該球員的投籃出手點為P,籃框中心點為Q,他可以選擇讓籃球在運行途中經(jīng)過A,B,C,D四個點中的某一點并命中Q,忽略其他因素的影響,那么被“蓋帽”的可能性最大的線路是()A.P→A→Q B.P→B→QC.P→C→Q D.P→D→Q8.已知平面向量,,且,則等于()A.(-2,-4) B.(-3,-6)C.(-5,-10) D.(-4,-8)9.已知圓與直線交于,兩點,過,分別作軸的垂線,且與軸分別交于,兩點,若,則A.或1 B.7或C.或 D.7或110.已知命題p:“”,則為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.一個扇形的中心角為3弧度,其周長為10,則該扇形的面積為__________12.若,則_________13.若函數(shù)是定義在上的偶函數(shù),當時,.則當時,______,若,則實數(shù)的取值范圍是_______.14.函數(shù)的零點個數(shù)為_________.15.設集合,對其子集引進“勢”的概念;①空集的“勢”最小;②非空子集的元素越多,其“勢”越大;③若兩個子集的元素個數(shù)相同,則子集中最大的元素越大,子集的“勢”就越大.最大的元素相同,則第二大的元素越大,子集的“勢”就越大,以此類推.若將全部的子集按“勢”從小到大順序排列,則排在第位的子集是_________.16.已知函數(shù),則=_________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知的三個頂點是,直線過點且與邊所在直線平行.(1)求直線的方程;(2)求的面積.18.已知(1)設,求t的最大值與最小值;(2)求的值域19.已知函數(shù)(且).(1)若函數(shù)的定義域為,求實數(shù)的取值范圍;(2)函數(shù)的定義域為,且滿足如下條件:存在,使得在上的值域為,那么就稱函數(shù)為“二倍函數(shù)”.若函數(shù)是“二倍函數(shù)”,求實數(shù)的取值范圍.20.已知某觀光海域AB段的長度為3百公里,一超級快艇在AB段航行,經(jīng)過多次試驗得到其每小時航行費用Q(單位:萬元)與速度v(單位:百公里/小時)(0≤v≤3)的以下數(shù)據(jù):012300.71.63.3為描述該超級快艇每小時航行費用Q與速度v的關系,現(xiàn)有以下三種函數(shù)模型供選擇:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b(1)試從中確定最符合實際的函數(shù)模型,并求出相應的函數(shù)解析式;(2)該超級快艇應以多大速度航行才能使AB段的航行費用最少?并求出最少航行費用21.已知函數(shù)(1)用函數(shù)奇偶性的定義證明是奇函數(shù);(2)用函數(shù)單調性的定義證明在區(qū)間上是增函數(shù);(3)解不等式

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由補集的定義分析可得?U【詳解】根據(jù)題意,全集U=1,2,3,4,5,6,7,8,9,而A=則?U故選:B2、D【解析】由輔助角公式可得,由函數(shù)關于直線對稱,可得,可?。畯亩傻?,由此結合,可得一個最大值一個最小值,從而可得結果.【詳解】,,函數(shù)關于直線對稱,,即,,故可取故,,即可得:,故可令,,,,即,,其中,,,故選D【點睛】本題主要考查輔助角公式的應用、三角函數(shù)的最值、三角函數(shù)的對稱性,轉化與劃歸思想的應用,屬于難題.由函數(shù)可求得函數(shù)的周期為;由可得對稱軸方程;由可得對稱中心橫坐標.3、B【解析】令,根據(jù)定義,可得的奇偶性,根據(jù)題意,可得,可求得值,分析討論,即可得答案.【詳解】令,則,所以為偶函數(shù),圖象關于y軸對稱,因為原方程僅有一個實根,所以有且僅有一個根,即,所以,解得或-1,當時,,,,不滿足僅有一個實數(shù)根,故舍去,當時,,當時,由復合函數(shù)的單調性知是增函數(shù),所以,當時,,所以,所以僅有,滿足題意,綜上:.故選:B4、C【解析】利用元素與集合,集合與集合的關系判斷.【詳解】因為集合是奇數(shù)集,所以,,,A,故選:C5、C【解析】根據(jù)三角函數(shù)表,在三角形中,當時,即可求解【詳解】在三角形中,,故在三角形中,“”是“”的充分必要條件故選:C【點睛】本題考查充要條件的判斷,屬于基礎題6、C【解析】若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)>0,根據(jù)二次函數(shù)的單調性,我們可得到關于a的不等式,解不等式即可得到a的取值范圍【詳解】若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則當x∈[2,+∞)時,x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)即,f(2)=4+a>0解得﹣4<a≤4故選C【點睛】本題考查的知識點是復合函數(shù)的單調性,二次函數(shù)的性質,對數(shù)函數(shù)的單調區(qū)間,其中根據(jù)復合函數(shù)的單調性,構造關于a的不等式,是解答本題的關鍵7、B【解析】定性分析即可得到答案【詳解】B、D兩點,橫坐標相同,而D點的縱坐標大于B點的縱坐標,顯然,B點上升階段的水平距離長;A、B兩點,縱坐標相同,而A點的橫坐標小于B點的橫坐標,等經(jīng)過A點的籃球運行到與B點橫坐標相同時,顯然在B點上方,故B點上升階段的水平距離長;同理可知C點路線優(yōu)于A點路線,綜上:P→B→Q是被“蓋帽”的可能性最大的線路.故選:B8、D【解析】由,求得,再利用向量的坐標運算求解.【詳解】解:因為,,且,所以m=-4,,所以=(-4,-8),故選:D9、A【解析】由題可得出,利用圓心到直線的距離可得,進而求得答案【詳解】因為直線的傾斜角為,,所以,利用圓心到直線的距離可得,解得或.【點睛】本題考查直線與圓的位置關系,屬于一般題10、C【解析】根據(jù)命題的否定的定義判斷【詳解】特稱命題的否定是全稱命題命題p:“”,的否定為:故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】利用弧長公式以及扇形周長公式即可解出弧長和半徑,再利用扇形面積公式即可求解.【詳解】設扇形的半徑為,弧長為,則,解得,所以,答案為6.【點睛】主要考查弧長公式、扇形的周長公式以及面積公式,屬于基礎題.12、【解析】先求得,然后求得.【詳解】,.故答案為:13、①.②.【解析】根據(jù)給定條件利用偶函數(shù)的定義即可求出時解析式;再借助函數(shù)在單調性即可求解作答.【詳解】因函數(shù)是定義在上的偶函數(shù),且當時,,則當時,,,所以當時,;依題意,在上單調遞增,則,解得,所以實數(shù)的取值范圍是.故答案為:;14、3【解析】作出函數(shù)圖象,根據(jù)函數(shù)零點與函數(shù)圖象的關系,直接判斷零點個數(shù).【詳解】作出函數(shù)圖象,如下,由圖象可知,函數(shù)有3個零點(3個零點分別為,0,2).故答案為:315、【解析】根據(jù)題意依次按“勢”從小到大順序排列,得到答案.【詳解】根據(jù)題意,將全部的子集按“勢”從小到大順序排列為:,,,,,,,.故排在第6的子集為.故答案為:16、【解析】按照解析式直接計算即可.【詳解】.故答案為:-3.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用線線平行得到直線的斜率,由點斜式得直線方程;(2)利用點點距求得,利用點線距求得三角形的高,從而得到的面積.試題解析:(1)由題意可知:直線的斜率為:,∵,直線的斜率為-2,∴直線的方程為:,即.(2)∵,點到直線的距離等于點到直線的距離,∴,∴的面積.18、(1),;(2)[3,4].【解析】(1)利用對數(shù)函數(shù)的單調性即得;(2)換元后結合二次函數(shù)的性質可得函數(shù)在上單調遞增,即求.【小問1詳解】因為函數(shù)在區(qū)間[2,4]上是單調遞增的,所以當時,,當時,【小問2詳解】令,則,由(1)得,因為函數(shù)在上是單調增函數(shù),所以當,即時,;當,即時,,故的值域為.19、(1)(2)【解析】(1)由題意可知,對任意的,恒成立,利用參變量分離法結合指數(shù)函數(shù)的值域可求得實數(shù)的取值范圍;(2)分析可知在定義域內單調遞增,由“二倍函數(shù)”的定義可知關于的二次方程有兩個不等的正根,可得出關于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【小問1詳解】解:的定義域為,所以,恒成立,則恒成立,,,因此,實數(shù)的取值范圍為.小問2詳解】解:當時,因為內層函數(shù)為增函數(shù),外層函數(shù)為增函數(shù),故函數(shù)在定義域內單調遞增,當時,因為內層函數(shù)為減函數(shù),外層函數(shù)為減函數(shù),故函數(shù)在定義域內單調遞增,若函數(shù)是“二倍函數(shù)”,則需滿足,即,所以,、是關于的方程的兩根,設,則關于的方程有兩個不等的正根,所以,,解得,因此,實數(shù)的取值范圍是.20、(1)選擇函數(shù)模型,函數(shù)解析式為;(2)以1百公里/小時航行時可使AB段的航行費用最少,且最少航行費用為2.1萬元.【解析】(1)對題中所給的三個函【解析】對應其性質,結合題中所給的條件,作出正確的選擇,之后利用待定系數(shù)法求得解析式,得出結果;(2)根據(jù)題意,列出函數(shù)解析式,之后應用配方法求得最值,得到結果.【詳解】(1)若選擇函數(shù)模型,則該函數(shù)在上為單調減函數(shù),這與試驗數(shù)據(jù)相矛盾,所以不選擇該函數(shù)模型若選擇函數(shù)模型,須,這與試驗數(shù)據(jù)在時有意義矛盾,所以不選擇該函數(shù)模型從而只能選擇函數(shù)模型,由試驗數(shù)據(jù)得,,即,解得故所求函數(shù)解析式為:(2)設超級快艇在AB段的航行費用為y(萬元),則所需時間(小時),其中,結合(1)知,所以當時,答:當該超級快艇以1百公里/小時航行時可使AB段的航行費用最少,且最少航行費用為2.1萬元【點睛】該題考查的是有關函數(shù)的應用題,涉及到的知識點有函數(shù)模型的正確選擇,等量關系式的建立,配方法求二次式的最值,屬于簡

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論