湖北省四地七校考試聯(lián)盟2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
湖北省四地七??荚嚶?lián)盟2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
湖北省四地七校考試聯(lián)盟2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
湖北省四地七??荚嚶?lián)盟2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
湖北省四地七??荚嚶?lián)盟2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省四地七??荚嚶?lián)盟2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,且,則的值為()A. B.C.或 D.或2.直線(t為參數(shù))被圓所截得的弦長為()A. B.C. D.3.已知直線和圓相交于兩點.若,則的值為()A. B.C. D.4.已知橢圓的左焦點為,右頂點為,點在橢圓上,且軸,直線交軸于點.若,則橢圓的離心率是A. B.C. D.5.橢圓的長軸長為()A. B.C. D.6.?dāng)?shù)列中前項和滿足,若是遞增數(shù)列,則的取值范圍為()A. B.C. D.7.設(shè)m,n是兩條不同直線,,是兩個不同平面,則下列說法錯誤的是()A.若,,則; B.若,,則;C.若,,則; D.若,,則8.已知,,若,則()A.6 B.11C.12 D.229.若的解集是,則等于()A.-14 B.-6C.6 D.1410.在等差數(shù)列中,為其前n項和,,則()A.55 B.65C.15 D.6011.已知數(shù)列滿足,在任意相鄰兩項與(k=1,2,…)之間插入個2,使它們和原數(shù)列的項構(gòu)成一個新的數(shù)列.記為數(shù)列的前n項和,則的值為()A.162 B.163C.164 D.16512.已知矩形,,,沿對角線將折起,若二面角的余弦值為,則與之間距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)橢圓標(biāo)準(zhǔn)方程為,則該橢圓的離心率為______14.正四棱柱中,,,點為底面四邊形的中心,點在側(cè)面四邊形的邊界及其內(nèi)部運(yùn)動,若,則線段長度的最大值為__________15.已知雙曲線M的中心在原點,以坐標(biāo)軸為對稱軸.從以下三個條件中任選兩個條件,并根據(jù)所選條件求雙曲線M的標(biāo)準(zhǔn)方程.①一個焦點坐標(biāo)為;②經(jīng)過點;③離心率為.你選擇的兩個條件是___________,得到的雙曲線M的標(biāo)準(zhǔn)方程是___________.16.唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題——“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬再回到軍營,怎樣走才能使總路程最短?在如圖所示的直角坐標(biāo)系xOy中,設(shè)軍營所在平面區(qū)域為{(x,y)|x2+y2≤},河岸線所在直線方程為x+2y-4=0.假定將軍從點P(,)處出發(fā),只要到達(dá)軍營所在區(qū)域即回到軍營,當(dāng)將軍選擇最短路程時,飲馬點A的縱坐標(biāo)為______.最短總路程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,點分別在射線,上運(yùn)動,且(1)求;(2)求線段的中點M的軌跡C的方程;(3)直線與,軌跡C及自上而下依次交于D,E,F(xiàn),G四點,求證:18.(12分)已知雙曲線的左,右焦點為,離心率為.(1)求雙曲線C的漸近線方程;(2)過作斜率為k的直線l分別交雙曲線的兩條漸近線于A,B兩點,若,求k的值.19.(12分)已知二次曲線的方程:(1)分別求出方程表示橢圓和雙曲線的條件;(2)若雙曲線與直線有公共點且實軸最長,求雙曲線方程;(3)為正整數(shù),且,是否存在兩條曲線,其交點P與點滿足,若存在,求的值;若不存在,說明理由20.(12分)在平面直角坐標(biāo)系中,已知直線:(t為參數(shù)).以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為(1)求曲線C的直角坐標(biāo)方程;(2)設(shè)點M的直角坐標(biāo)為,直線l與曲線C的交點為A,B,求的值21.(12分)已知函數(shù).(1)設(shè)x=2是函數(shù)f(x)的極值點,求a,并求f(x)的單調(diào)區(qū)間;(2)證明:當(dāng)時,.22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD是一個直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,點M和點N分別為PA和PC的中點(1)證明:直線DM∥平面PBC;(2)求直線BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求點P到平面DBN距離;(5)設(shè)點N在平面BDM內(nèi)的射影為點H,求線段HA的長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)空間向量平行的性質(zhì)得,代入數(shù)值解方程組即可.【詳解】因為,所以,所以,所以,解得或.故選:C.2、C【解析】求得直線普通方程以及圓的直角坐標(biāo)方程,利用弦長公式即可求得結(jié)果.【詳解】因為直線的參數(shù)方程為:(t為參數(shù)),故其普通方程為,又,根據(jù),故可得,其表示圓心為,半徑的圓,則圓心到直線的距離,則該直線截圓所得弦長為.故選:C.3、C【解析】求出圓心到直線的距離,再利用,化簡求值,即可得到答案.【詳解】圓的圓心為,圓心到直線的距離公式為,故故選:C.4、D【解析】由于BF⊥x軸,故,設(shè),由得,選D.考點:橢圓的簡單性質(zhì)5、D【解析】由橢圓方程可直接求得.【詳解】由橢圓方程知:,長軸長為.故選:D.6、B【解析】由已知求得,再根據(jù)當(dāng)時,,,可求得范圍.【詳解】解:因為,則,兩式相減得,因為是遞增數(shù)列,所以當(dāng)時,,解得,又,,所以,解得,綜上得,故選:B.7、C【解析】直接由直線平面的定理得到選項正確;對于選項,m,n可能平行、相交或異面,所以該選項錯誤;對于選項,與內(nèi)一直線l,所以,因為l為內(nèi)一直線,所以.所以該選項正確.【詳解】對于選項,若,,則,所以該選項正確;對于選項,若,,則,所以該選項正確;對于選項,若,,則m,n可能平行、相交或異面,所以該選項錯誤;對于選項,若,,則與內(nèi)一直線l,所以,因為l為內(nèi)一直線,所以.所以該選項正確.故選:C【點睛】本題主要考查空間直線平面位置關(guān)系判斷,意在考查學(xué)生對這些知識的理解掌握水平.8、C【解析】根據(jù)遞推關(guān)系式計算即可求出結(jié)果.【詳解】因為,,,則,,,故選:C.9、A【解析】由一元二次不等式的解集,結(jié)合根與系數(shù)關(guān)系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.10、B【解析】根據(jù)等差數(shù)列求和公式結(jié)合等差數(shù)列的性質(zhì)即可求得.【詳解】解析:因為為等差數(shù)列,所以,即,.故選:B11、C【解析】確定數(shù)列的前70項含有的前6項和64個2,從而求出前70項和.【詳解】,其中之間插入2個2,之間插入4個2,之間插入8個2,之間插入16個2,之間插入32個2,之間插入64個2,由于,,故數(shù)列的前70項含有的前6項和64個2,故故選:C12、C【解析】過點在平面內(nèi)作,過點在平面內(nèi)作,以、為鄰邊作平行四邊形,連接,分析可知二面角的平面角為,利用余弦定理求出,證明出,再利用勾股定理可求得的長.【詳解】過點在平面內(nèi)作,過點在平面內(nèi)作,以、為鄰邊作平行四邊形,連接,因為,,,則,因為,由等面積法可得,同理可得,由勾股定理可得,同理可得,,因為四邊形為平行四邊形,且,故四邊形為矩形,所以,,因為,所以,二面角的平面角為,在中,,,由余弦定理可得,,,,則,,因為,平面,平面,則,,由勾股定理可得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】求出、的值,即可求得橢圓的離心率.【詳解】在橢圓中,,,則,因此,該橢圓的離心率為.故答案為:.14、【解析】根據(jù)正四棱柱的性質(zhì)、矩形的性質(zhì),線面垂直的判定定理,結(jié)合勾股定理進(jìn)行求解即可.【詳解】當(dāng)位于點時,因為是正方形,所以,由正四棱柱的性質(zhì)可知,平面,因為平面,所以,因為平面,所以平面,平面,所以,因此當(dāng)位于點時,滿足題意,當(dāng)點位于邊點時,若,在矩形中,,因為,所以,因此,所以有,此時,又平面,所以平面,故點的軌跡在線段上,,所以線段長度的最大值為.故答案為:關(guān)鍵點睛:利用特殊點判斷出點的軌跡是解題的關(guān)鍵.15、①.①②或①③或②③②.或或【解析】選①②,根據(jù)焦點坐標(biāo)及頂點坐標(biāo)直接求解,選①③,根據(jù)焦點坐標(biāo)及離心率求出即可得解,選②③,可由頂點坐標(biāo)及離心率得出,即可求解.【詳解】選①②,由題意則,,,雙曲線的標(biāo)準(zhǔn)方程為,故答案為:①②;,選①③,由題意,,,,雙曲線的標(biāo)準(zhǔn)方程為,選②③,由題意知,,,雙曲線的標(biāo)準(zhǔn)方程為.故答案為:①②;或①③;或②③;.16、①.②.【解析】求出P(,)關(guān)于直線x+2y4=0對稱點P'的坐標(biāo),再求出線段OP'與直線x+2y-4=0的交點A,再利用圓的幾何性質(zhì)可得結(jié)果.【詳解】設(shè)P(,)關(guān)于直線x+2y4=0的對稱點為P'(m,n),則解得因為從點P到軍營總路程最短,所以A為線段OP'與直線x+2y4=0的交點,聯(lián)立得y=(42y),解得y=.所以“將軍飲馬”的最短總路程為=,故答案為,.【點睛】本題主要考查對稱問題以及圓的幾何性質(zhì),屬于中檔題.解析幾何中點對稱問題,主要有以下三種題型:(1)點關(guān)于直線對稱,關(guān)于直線的對稱點,利用,且點在對稱軸上,列方程組求解即可;(2)直線關(guān)于直線對稱,利用已知直線與對稱軸的交點以及直線上特殊點的對稱點(利用(1)求解),兩點式求對稱直線方程;(3)曲線關(guān)于直線對稱,結(jié)合方法(1)利用逆代法求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2(2)(3)證明見詳解【解析】(1)用兩點間的距離公式和三角形的面積公式,結(jié)合已知直接可解;(2)根據(jù)中點坐標(biāo)公式,結(jié)合(1)中結(jié)論可得;(3)要證,只需證和的中點重合,直接或利用韋達(dá)定理求出中點橫坐標(biāo),證明其相等即可.【小問1詳解】記直線的傾斜角為,則,易得所以因為,所以,整理得:【小問2詳解】設(shè)點M的坐標(biāo)為,則即,由(1)知,所以,即【小問3詳解】要證,只需證和的中點重合,記D,E,F(xiàn),G的橫坐標(biāo)分別為,易知直線的斜率(當(dāng)時與漸近線平行或重合,此時與雙曲線最多一個交點)則解方程組,得解方程組,得將代入,得所以因為所以所以和的中點的橫坐標(biāo)相等,所以和的中點重合,記其中點為N,則有,即18、(1)(2)【解析】(1)由離心率可得雙曲線的漸近線方程;(2)設(shè),則的中點為,由,可得,然后的方程與雙曲線的漸近線方程聯(lián)立,利用韋達(dá)定理可得答案.【小問1詳解】設(shè),則,又,所以,得,所以雙曲線的漸近線方程為.【小問2詳解】由已知直線的傾斜角不是直角,,設(shè),則的中點為,,由,可知,所以,即,因為的方程為,雙曲線的漸近線方程可寫為,由消去y,得,所以,,所以,因為,所以,即.19、(1)時,方程表示橢圓,時,方程表示雙曲線;(2);(3)存在,且或或.【解析】(1)當(dāng)且僅當(dāng)分母都為正,且不相等時,方程表示橢圓;當(dāng)且僅當(dāng)分母異號時,方程表示雙曲線(2)將直線與曲線聯(lián)立化簡得:,利用雙曲線與直線有公共點,可確定的范圍,從而可求雙曲線的實軸,進(jìn)而可得雙曲線方程;(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì),任意兩橢圓之間無公共點,任意兩雙曲線之間無公共點,從而可求【詳解】(1)當(dāng)且僅當(dāng)時,方程表示橢圓;當(dāng)且僅當(dāng)時,方程表示雙曲線(2)化簡得:△或所以雙曲線的實軸為,當(dāng)時,雙曲線實軸最長為此時雙曲線方程為(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì)任意兩橢圓之間無公共點,任意兩雙曲線之間無公共點設(shè),,,2,,,6,7,由橢圓與雙曲線定義及;所以所以這樣的,存在,且或或【點睛】方法點睛:曲線方程的確定可分為兩類:若已知曲線類型,則采用待定系數(shù)法;若曲線類型未知時,則可利用直接法、定義法、相關(guān)點法等求解或者利用分類討論思想求解.20、(1)(2)【解析】【小問1詳解】由,得.兩邊同乘,即.由,得曲線的直角坐標(biāo)方程為【小問2詳解】將代入,得,設(shè)A,B對應(yīng)的參數(shù)分別為則所以.由參數(shù)的幾何意義得21、(1),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)證明見解析;【解析】(1)求出函數(shù)的定義域與導(dǎo)函數(shù),依題意可得,即可求出參數(shù)的值,再根據(jù)導(dǎo)函數(shù)與函數(shù)的單調(diào)性的關(guān)系求出函數(shù)的單調(diào)區(qū)間;(2)依題意可得,令,即證,,又,所以即證,令,利用導(dǎo)數(shù)說明其單調(diào)性,即可得解;【詳解】解:(1)因為,定義域為,所以,因為是函數(shù)的極值點,所以,所以,解得,所以,令,則,所以在上單調(diào)遞增,又,所以當(dāng)時,,即,所以在上單調(diào)遞減,當(dāng)時,,即,所以上單調(diào)遞增,綜上可得的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)證明:依題意即證,即證,令,則,所以即證,因為,所以即證,令,則,所以當(dāng)時,,當(dāng)時,所以,所以,所以當(dāng)時,22、(1)證明見解析(2)(3)(4)(5)【解析】(1)以為原點,建立空間直角坐標(biāo)系,利用向量法,證明與平面的法向量垂直,從而證明直線平面(2)求出平面的法向量,利用向量法,求出直線和平面所成角的余弦值(3)求出平面的法向量和平面的法向量,利用向量法,求出二面角的正弦值(4)求出的坐標(biāo),再求出平面的法向量,利用向量法,求出點到平面的距離;(5)設(shè)點在平面內(nèi)的射影為點,從而表示出的坐標(biāo),求出到平面的距離,列出方程組,求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論