版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1982Quantumsimulator■Allclassicalcomputerswork
infundamentallythesame
way.■Quantum
systems
are
fundamentally
different.The
size
ofthe
problemgoesupexponentiallyin
the
size
ofthe
system,making
them
hard
to
simulate.Richard
Feynman■In
1982this
led
Feynmanto
propose
quantumcomputers.A
quantum
system
should
be
able
toefficientlysimulateanotherquantum
system.■Efficiently
meansthat
the
resources
used
(timeandsize
ofthe
system)shouldscaleat
most
polynomially
inthesizeofthesystem
to
be
simulated.■
Polynomiallymeansas
x,x2,x3,etc.1985Universalquantumcomputer■Aclassical
computeruses
bits,e.g.001100010010011110100001101101110011■Quantum
computers
replace
this
with
a
quantum
state|001100010010011110100001101101110011〉■Eachdigitisa
two-level
quantum
system-a
qubit.David
Deutsch■Quantum
computers
can
be
in
superpositions
of
these
states■Represent
the
state
as
a
vector:■The
allowed
operations
on
this
state
are
unitary
matrices.These
satisfyU+U=Ⅱ■The
t
indicates
the
Hermitian
conjugate-the
transpose
and
complex
conjugate
of
the
matrix.■
Any
allowed
operation
is
reversible.Using
U+on
U|ψ〉will
restore
the
state
|ψ〉.■Aspecial
caseispermutationmatrices-apermutationmatrix
only
changes
one
computational
basis
state
to
another.Universalquantumcomputer■Operations
on
the
state
can
be
represented
as
matrices:Ittakes
|0〉
to
|1〉,andviceversa.2.The
controlled
NOT
acts
on
two
qubits.It
performs
an
X
on
the
targetqubit
ifthe
control
qubit
is
in
the
state
|1〉.Otherwise
it
does
nothing.Examplesofpermutations1.The
NOT
operation,also
called
an
X,acts
on
a
single
qubit3.The
Toffoli
gate
is
a
NOT
controlled
by
twoonly
if
both
controls
are
in
the
state
|1〉.qubits.It
performs
an
XTurningclassical
intoquantum■
The
NANDgate
is
universalforclassicalcircuitsandacts
as
below.■We
can
convert
any
classical
algorithm
into
a
quantum
algorithm,replacing
the
NAND
gates
with
Toffolis,and
keeping
the
extra
qubits.ABQ001011101110■Wecan
performthesameoperation
usinga
Toffoli
gate.Turningclassical
intoquantum■Anyfunctionwecouldcalculateonaclassical
computerwe
could
alsocompute
on
a
quantum
computer,withthe
addition
ofsome
extra“garbage”registers.|x>|0〉|f(x)>|extra
data(x)〉■Thiscan
beturned
into
a
computationthat
does
this:Uf|x>|0>=|x>|f(x)〉■
Method:1.Add
an
ancilla,and
perform
the
program
as
above
to
give
If(x)>|0>|extradata(x)〉.2.Copythe
output
ofthefunction
intothe
extra
ancilla,to
giveIf(x)>|f(x)>|extradata(x)〉.3.Invert
the
program
above,giving
|x>|f(x)>|0>.■Forancillasthat
are
not
initiallyzeroed,we
canjust
perform
the
XOR.Uf|x>|b〉=|x>|b田
f(x)〉"Quantum
computationis.αdistinctivelynewway
of
harnessingnature….It
will
be
thefirsttechnology
thatallows
useful
tasks
to
beperformed
incollaboration
betweenparallel
universes.
"David
DeutschSHIFT
HAPPENS.FIREIVE
INVENTEDA
QUANTUM
COMPUTER,CAPABLE
OFINTERACTING
WITH
MATTERFROM
OTHER
UNIVERSES
ToSOLVE
COMPLEXEQUATION5.ACCORDINGTOCHAO5THEORY,YOURTINYCHANGETOANOTHERUNIVERSE
WILL
SHIFT
ITS
DESTINY,PO5STBLY
KILLING
EVERYINHABITANT.■
For
n
qubits,we
have
evaluated
anexponential
number
of
different
values
ofthe
function.Partofthestory:Superposition■
Nowwhat
ifwestartthestate
in
a
superposition?■But
ifwemeasure
it,weonlyeverfindone
value
ofthe
function!■We
can't
just
calculate
many
valuesof
a
function,we
need
some
way
tointerfere
them
to
obtain
some
globalproperty
of
the
function.■
We
need
non-permutation
gates:The
Hadamard
gate
has
a
matrix
representation■JustmeasuringSchr?dinger'scat
would
never
show
it
in
asuperposition.■
Ifwe
could
do
a
Hadamard
onSchr?dinger's
cat,we
would
turn1.
(llive)+|dead〉)/√2to
|live),andTheotherpart:Interference2.(llive)-|dead>)/√2
to
|dead〉showing
we
have
superposition.HE
ESCAPED
BEFORETHE
EXPERIMENT
WASFINISHEDAND
NOWJHE'S
BOTH
ALIVE
ANDDEAD
AT
THE
SAMETIME.0>→
(10>+|1〉)/
√2
1〉→
(10〉-|1〉)/
√2THIS
IS
WULF.HE
USEDTOWORK
FORA
FAMOUS
PHYSICIST
NAMEDSCHRODINGER.WOW.I
HAVEHALFAMINDTO
BEOFFENDEDBYTHAT.LIKE
A
ZOMBIE?|
|Theotherpart:Interference■We
can't
just
calculate
many
values
of
a
function,we
need
some
way
tointerfere
them
to
obtain
some
global
property
of
the
function.togetherwiththeToffoligate
is
universalforreal
unitaries.2.
The
π/8
orT
gate■Universal
sets
of
gates:1.TheHadamard
gatetogetherwiththe
HadamardandCNOT
is
universal.The
Deutschalgorithm■Problem:Givenafunctionf(x)mappingbitstobits,determine
if
it
is
one-to-one
[i.e.f(0)≠f(1)].■Classically
we
need
to
evaluate
both
f(0)and
f(1).■
Quantum
algorithm:1.
Start
with|0>|1〉2.Perform
a
Hadamard
on
both
qubits
to
give3.Apply
the
gate
mappingx>|b〉x>|b
田
f(x)〉
to
give4.Apply
Hadamard
on
qubit
2
to
giveDavid
Deutsch1985The
Deutschalgorithm1.
Startwith|0>|1〉2.Perform
a
Hadamard
on
both
qubits
to
give1985David
Deutsch4.
Apply
Hadamard
on
qubit
2
to
give3.Apply
the
gate
mappingx>|b田
f(x)〉to
give|x>|b〉|The
Deutschalgorithm■
Problem:
Given
a
function
f(x)mapping1bit
to1bit
f(x):{0,1}→{0,1},determine
if
it
is
either
constant
orbalanced.■Classically
we
need
to
evaluate
both
f(0)and
f(1).■Deutsch
quantum
algorithm
gives
result
with
one
functionevaluation.■Quantum
algorithm
has
two
crucial
steps:1.Calculate
the
function
on
both
input
values
simultaneously.2.
Interfere
the
result.David
Deutsch1985The
Deutschalgorithm■Problem:
Given
a
function
f(x)mapping1
bit
to1
bitf(x):{0,1}→{0,1},determineifitiseitherconstantorbalanced.■
Classically
weneed
to
evaluateboth
f(0)and
f(1).■Deutschquantumalgorithmgives
result
with
onefunction
evaluation.Interferetheresult.H
measurementH1985David
DeutschCalculatethefunction
onboth
inputvalues
simultaneously.|0〉
H■
Problem:
Given
a
function
f(x)mapping
n
bits
to1bit
f(x):{0,1}n→{0,1},determine
if
it
is
either
constant
orbalanced.
There
is
a
promise
that
it
is
either.■
Classically
weneedtoevaluate2n-1+1valuesoff(x).■Deutsch-Jozsa
quantum
algorithm
gives
result
with
onefunction
evaluation.measurementRichard
Jozsa|1〉
HUf|x>|b〉=|x>|b
田
f(x)〉1992The
Deutsch-JozsaalgorithmDavid
DeutschPhaseoracles■We
have
previously
assumed
that
the
unitary
for
the
function
acts
asUf|x>|b〉=|x>|b田
f(x)〉■In
both
caseswe
have
needed
to
turn
this
into
a
phase
in
ordertomake
the
algorithm
work,i.e.■Instead
we
canjust
take
the
oracle
to
have
this
form:Uf|x
〉=(-1)f(x)|x〉The
Deutsch-Jozsaalgorithm■Deutsch
algorithm:start
with■Deutsch-Jozsa
algorithm:start■
The
probabilityofmeasuringy
is■
The
probabilityofmeasuringy
is■
Thefunction
evaluation
yields■
Thefunction
evaluation
yields■
A
Hadamard
givesly>=|00…0〉■Hadamards
give1992with■
Problem:
Givena
function
f(x)mapping1bitto1bitf(x):{0,1}→{0,1}such
that
f(x)=s·x,determine
s.■
The
function
evaluation
yieldssampling■
The
probabilityofmeasuringy
isFourier1993Bernstein,Vazirani■
Hadamardsgive1996Grover'ssearchalgorithm■
Problem:
Given
a
function
f(x)mapping
n
bits
to1
bitf(x):{0,1}n→{0,1},determine
the
value
of
x
such
thatf(x)=1.We
have
a
promise
that
the
value
is
unique.■Classically
we
need
to
evaluate
O(N)values,N=2n.Lov
Grover■Grover's
algorithm
enables
a
search
with
o(√
N)queries.■Quantum
algorithm
has
two
crucial
steps:1.Calculate
the
function
on
all
values
simultaneously.2.
Reflect
about
the
equal
superposition
state.■These
steps
are
repeated
o(√
N)times.1996Grover'ssearchalgorithm■
We
start
in
the
state■
We
repeat
the
following~√
N
times:1.Apply
the
function
calculation
Uf.
Lov
Grover2.Apply
the
reflection
operation
Us=2|s〉〈s|-Ⅱ
.■The
system
will
be
in
the
state|w
〉such
that
f(w)=1.■
But
how
dowe
perform
Us?Grover'ssearchalgorithm■
But
how
dowe
perform
Us?■First,invert
the
operation
thatprepares|s
〉-justHadamards
on
all
qubits.■Then,reflect
about|0〉;i.e.apply
2|0><0|-Ⅱ
.■Lastly,repeattheoperationthatprepares|s)|1〉Lov
Grover19961996Grover'ssearchalgorithm■
Eachcoefficient
is
reflectedaboutthe
mean■What
does
Us
do?Lov
GroverGrover'ssearchalgorithm■Example:Take
N=4,withsolution
x=3.■
We
start
in
the
state■
Apply
the
function
calculationUf,giving■
The
mean
isLov
Grover1996Grover'ssearchalgorithm■Example:Take
N=4,withsolution
x=3.■
We
start
in
the
state■
Apply
the
function
calculationUf,giving■
The
mean
is■Therefore,when
we
apply
the
reflection
operation
Us,we
get1996Lov
GroverGrover'ssearchalgorithm■
Example:Take
N=9,withsolution
x=6.■
Reflectingtarget..■
The
mean
is
7/27.Lov
Grover1996Grover'ssearchalgorithm■
Example:Take
N=9,withsolution
x=6.■Reflectingtarget..■
The
mean
is
7/27.■Reflecting
aboutmean...■Reflectingtarget..■
The
mean
is
17/243.Lov
Grover1996Grover'ssearchalgorithm■
Example:Take
N=9,withsolution
x=6.■Reflectingtarget..■
The
mean
is
7/27.■Reflecting
aboutmean...■Reflectingtarget..■
The
mean
is
17/243.■
Reflecting
about
mean...Solutionwithhigh
probability.Lov
Grover1996■Then|s〉=cosφ|s'>+sinφ|w〉with
sinφ=1/√
N.■
The
operation
Uf
reflects
|w>and
leaves
all
orthogonalstates
unchanged.Uf=Ⅱ-2|w
〉w|■
The
action
of
Uf
on|s'>isUfls'〉=(Ⅱ-2|w>(w|)|s'>=|s'〉Grover'ssearchalgorithm■Another
wayof
looking
at
it:Rotations■Define
the
ket
perpendicular
to
|w>.Lov
Grover1996Grover'ssearchalgorithm■Another
way
of
looking
at
it:Rotations■
The
action
of
Uf
on
|s'>isUfls'〉=|s'〉■
The
action
of
Us
on
|w>isUs|w〉=(2|s>〈s|-Ⅱ)|w〉=2(s|w
〉|s〉-|w〉=2
sinφ|s〉-|w〉■
Now
use|s〉=cosφ|s'>+sinφ|w〉■
This
givesUs|w
〉=2sinφ(cosφ|s'>+sinφ|w
〉)-|w〉=2
sinφcosφ|s'>-(1-2
sin2φ)|w
〉=sin
2φ|s'〉-cos
2φ|w〉Lov
Grover1996Grover'ssearchalgorithm■Anotherwayoflookingat
it:Rotations■
The
action
of
U
on|s'>isUfls'〉=|s'〉■
The
action
of
Us
on
|w>isUs|w〉=sin
2φ|s'>-cos
2φ|w〉■
The
action
of
Us
on
|s'>isUs|s'>=(2|s>〈s|-Ⅱ)|s'〉=2s|s'>|s〉-|s'〉=2cosφls〉-|s'〉■
Now
use|s〉=cosφ|s'>+sinφ|w〉■
This
givesUs|s'〉=2cosφ(cosφ|s'〉+sinφ|w〉)-|s'〉=(2cos2φ-1)|s'>+2
sinφcosφ|w
〉
=cos2φ|s'>+sin
2φ|w〉Lov
Grover1996Grover'ssearchalgorithm■Anotherwayoflookingat
it:RotationsUfls'〉=|s'〉Us|w
〉=sin
2φ|s'〉-cos
2φ|w〉Us|s'>=cos2φ|s'>+sin2φ|w〉■Consider
a
state
writtenasψ〉=cosθ|s'〉+sinθ|w〉■The
action
of
U
on
|4>isUflψ〉=cosθ|s'〉-sinθ|w〉■
Then
applying
Us
gives
UsUflψ〉=cosθ[cos2φ|s'>+sin2φ|w]-sinθ[sin2φ|s'〉-cos
2φ|w]
=[cosθcos2φ-sinθsin
2φ]|s'>+[cosθ
sin
2φ+sinθ
cos
2φ]|w〉
=cos(θ+2φ)|s'>+sin(θ+2φ)|w〉Lov
Grover1996Grover'ssearchalgorithm■Anotherwayoflookingat
it:RotationsUfls'〉=|s'〉Us|w
〉=sin
2φ|s'〉-cos
2φ|w〉Us|s'>=cos
2φ|s'>+sin
2φ|w〉■The
Grover
iteration
givesψ〉=cosθ|s'>+sinθ|w〉lw)
UsUflψ〉=cos(θ+2φ)|s'>+sin(θ+2φ)|w〉→
|s〉→
|s'〉Uf|s〉Lov
Grover1996Grover'ssearchalgorithm■Anotherwayoflookingat
it:RotationsUfls'〉=|s'〉Us|w
〉=sin2φ|s'〉-cos2φ|w〉Us|s'>=cos2φ|s'>+sin
2φ|w〉■The
Grover
iteration
givesψ〉=cosθ|s'>+sinθ|w
〉
UsUflψ〉=cos(θ+2φ)|s'>+sin(θ+2φ)|w〉1996Lov
GroverUsUf|s〉3φGrover'ssearchalgorithm■Another
wayof
looking
at
it:RotationsUfls'〉=|s'〉Us|w
〉=sin2φ|s'〉-cos2φ|w〉Us|s'>=cos
2φ|s'>+sin
2φ|w〉■TheGrover
iteration
givesψ〉=cosθ|s'>+sinθ|w〉UsUflψ〉=cos(θ+2φ)|s'>+sin(θ+2φ)|w〉1996Lov
Grover(U?U)2|s)5φGrover'ssearchalgorithm■A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 互聯(lián)網(wǎng)醫(yī)療與健康管理平臺(tái)運(yùn)營模式
- 生物安全與生物倫理問題探討
- 2026年廣元中核職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性考試模擬試題帶答案解析
- 2026年大興安嶺職業(yè)學(xué)院單招職業(yè)技能筆試模擬試題帶答案解析
- 醫(yī)療物聯(lián)網(wǎng)設(shè)備性能優(yōu)化
- 2026年黑龍江能源職業(yè)學(xué)院單招綜合素質(zhì)考試備考題庫帶答案解析
- 財(cái)政投資評(píng)審課件
- 2026年甘肅機(jī)電職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試備考題庫帶答案解析
- 暑假教育知識(shí)題庫及答案
- 腫瘤科靶向治療研究
- 2026年及未來5年市場(chǎng)數(shù)據(jù)中國化學(xué)發(fā)光行業(yè)發(fā)展趨勢(shì)預(yù)測(cè)及投資戰(zhàn)略咨詢報(bào)告
- 2026北京市中央廣播電視總臺(tái)招聘124人筆試參考題庫及答案解析
- 《物流系統(tǒng)工程-理論、方法與案例分析(第4版)》全套教學(xué)課件
- 2025版安全標(biāo)志大全高清
- 2025-2026學(xué)年度上學(xué)期八年語文試卷
- 中國臨床腫瘤學(xué)會(huì)(csco)乳腺癌診療指南2025
- 2025年幼兒園后廚工作面試題庫及答案
- 電渣爐的維護(hù)與管理制度(3篇)
- 早產(chǎn)兒喂養(yǎng)不耐受臨床診療指南
- 外來物種入侵事件應(yīng)急預(yù)案
- 電商模板拍攝合同范本
評(píng)論
0/150
提交評(píng)論