版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
本講主要內(nèi)容1量子傅里葉變換2相位估計(jì)3求階4Shor算法5
Shor算法實(shí)現(xiàn)RnH
Rn-2
Rn-
1H—
10)+e220-·|1)10)+e2/2--·|1)R?10)+e2-Qn-Ln|I)H-10)+22-%i|)Li)
H
R?Li:Ln-1)一Ln—Rn-11量子傅里葉變換[1]Michael
A.Nielsen
&Isaac
L.,Quantum
Computation
and
QuantumInformation,Cambridge
University
Press,20102離散傅里葉變換Onesuch
transformation
is
the
discreteFourier
transform.In
the
usualmathematical
notation,the
discrete
Fourier
transform
takes
as
input
a
vector
of
complex
numbers,xo,…,xN-1where
the
length
N
of
the
vector
is
a
fixed
parameter.It
outputs
the
transformed
data,a
vector
of
complex
numbers
yo,…,YN-1,defined
by(n=0:N-1)(5.1)3量子傅里葉變換The
quantum
Fourier
transform
is
exactly
the
same
transformation,although
the
conventional
notation
for
the
quantum
Fourier
transform
is
somewhat
different.Thequantum
Fourier
transform
on
an
orthonormal
basis10>N-1)is
defined
to
be
alinear
operator
with
the
following
action
on
the
basis
states,where
the
amplitudes
yk
are
the
discrete
Fourier
transform
ofthe
amplitudes
x;.It
is
notobviousfrom
the
definition,but
this
transformation
is
a
unitary
transformation,and
thuscanbeimplementedasthedynamics
for
a
quantum
computer.
Ve
shall
demonstrateEquivalently,the
action
on
an
arbitrarystate
may
be
written酉變換(5.2)(5.3)4Inthefollowing,we
takeN=2”,where
n
is
some
integer,and
the
basis|0),...,|2n-
1〉
is
the
computationalbasis
for
an
n
qubit
quantum
computer.It
is
helpful
to
write
thestatelj)usingthebinaryrepresentationj=jij2…jn.Moreformally,j=j12n-11+j2n-2+…+jn2?.Itisalso
convenient
to
adopt
the
notation
0.jijt+1…jm
to
representthe
binary
fraction
ji/2+jl+1/4+…+jm/2m-I+1.With
a
little
algebra
the
quantum
Fourier
transtorm
can
be
given
the
following
useful
product
representation:QFT
(續(xù))證明見下頁(yè)5QFT
(續(xù))The
equivalence
of
the
product
representation(5.4)and
the
definition(5.2)follows
from
someelementary
algebra:(5.5)(5.6)(5.7)(5.8)(5.9)(510)——10)+e2π20i…n1〉—|0)+e2π20,/2m/n|1〉R?|0)+e2πO.jn-17n|1)10)+2H?in|1)Figure
5.1.Efficient
circuit
for
the
quantum
Fourier
transform.This
circuit
is
easily
derived
from
the
productrepresentation(5.4)for
the
quantum
Fourier
transform.Not
shown
are
swap
gates
at
the
end
ofthe
circuit
whichreverse
the
order
of
the
qubits,or
normalization
factors
of
1/√2in
the
output.QFT的實(shí)現(xiàn)in-1〉in)Rn-2
Rn-1-Rn-1
RnR?Li2)-Li〉HHH7…ToseethatthepicturedcircuitcomputesthequantumFouriertransform,considerwhathappenswhenthestate
|j?…jn〉
isinput.ApplyingtheHadamardgatetothefirstbit
producesthestateWe
continue
applying
the
controlled-R?,R?through
Rn
gates,each
ofwhich
adds
anextrabittothephaseof
theco-efficientof
thefirst
|1).Attheendof
thisprocedurewe
havethe
statesince
e2πi?.i=-1
whenj?=1,and
is+1
otherwise.Applying
the
controlled-R?gate
producesthestateNext,we
perform
a
similarprocedure
on
the
second
qubit.The
Hadamard
gate
puts
usandthecontrolled-R?throughRn-1gates
yield
the
state(5.15)(5.16)in
the
state(5.12)(5.13)(5.14)8Box5.1:ThreequbitquantumFouriertransformForconcretenessitmayhelptolookattheexplicitcircuit
for
the
three
qubit
quantumFouriertransform:H
S
TH
SHRecallthat
SandTarethephaseandπ/8gates(seepagexxiii).As
amatrixthe
quantumFouriertransforminthisinstancemaybewrittenoutexplicitly,usingw=e2πi/8=√i,as3qubits
QFT(5.19)92相位估計(jì)[1]Michael
A.Nielsen
&Isaac
L.,Quantum
Computation
and
QuantumInformation,Cambridge
University
Press,201010問題的提出The
Fourier
transformis
the
key
toageneral
procedure
knownas
phaseestimation,which
in
turn
is
the
key
for
many
quantum
algorithms.
Suppose
a
unitary
operator
Uhas
an
eigenvector
|u〉with
eigenvalue
e2πi,where
the
value
of
φ
is
unknown.The
goalLofthephaseestimationalgorithmistoestimateφ
.To
perform
the
estimation
we
assume要估計(jì)的相位11U2-1
|u)Figure5.2.Thefirststageof
thephaseestimation
procedure.Normalizationfactorsof1/√Z
have
beenomitted,onthe
right.
Cu(10>+|1〉)|u〉=Cu|0>|u〉+Cu|1〉|u〉相位估計(jì):第1步H,Controlled
U10)+e2mπi2-14)1)10)
+e2m=(22)1)10>+e2m=i2)|1)10)+e2mi(2°9)1)=|0>|u〉+|1〉U|u〉=|0>|u〉+|1〉e2πi|u〉=(|0>+e2πiφ|1〉)|u〉|0〉H|0)
H10)—HHFirstregister
t
qubits12Thesecondstageof
phaseestimationistoapply
the
inverse
quantum
Fourier
transform
on
the
first
register.This
is
obtained
by
reversing
the
circuit
for
the
quantum
Fouriertransformintheprevious
section(Exercise
5.5),and
canbe
done
in
Θ(t2)steps.Thethird
and
final
stage
ofphase
estimation
is
to
read
out
the
state
ofthe
first
register
bydoingameasurementinthecomputationalbasis.Wewillshowthatthisprovides
apretty
good
estimate
ofφ.An
overall
schematic
ofthe
algorithm
is
shown
in
Figure
5.3.To
sharpen
our
intuition
as
to
why
phase
estimation
works,suppose
φ
may
be
ex-pressedexactlyint
bits,asφ=0.1…φt.Then
the
state(5.20)resulting
from
the
firststage
of
phase
estimation
may
be
rewritten相位估計(jì):第2步IQFT13相位估計(jì)過程H
FTUjFigure5.3.Schematic
of
the
overall
phase
estimation
procedure.The
topt
qubits(the'I'denotes
a
bundle
ofwires,as
usual)are
the
first
register,and
the
bottom
qubits
are
the
second
register,numbering
as
many
as
required
to
perform
U.|u)is
an
eigenstate
of
U
with
eigenvalue
e2πiφ.The
output
of
the
measurement
is
anapproximation
toφaccurate
to
bits,with
probability
of
success
at
least1-e.i)14相位估計(jì)算法Algorithm:QuantumphaseestimationInputs:
(1)A
black
box
wich
performs
a
controlled-Ui
operation,for
integer
j,qubits
initialized
to
|0).Outputs:
Ann-bitapproximationutoφu
·Runtime:
O(t2)operations
and
one
call
to
controlled-Ui
black
box.Succeeds
with
probabilityatleast
1-E.initial
statecreatesuperpositionapply
black
boxresult
ofblack
boxapply
inverse
Fourier
transformmeasure
first
register1.
|0>|u)2.3.4.
→
|Pu>|u〉5.
→u(2)an
eigenstate
|u)of
Uwith
eigenvalue
e2πiu,and(3
Procedure:15以|0)作為初態(tài)將待測(cè)量子門放入相位估計(jì)算法中,以較大概率得到了態(tài)|1101>,以態(tài)|1}作為初態(tài)將待測(cè)量子門放入相位估計(jì)算
法中,以較大概率得到了態(tài)|1010),則θ/π應(yīng)該為?(注意態(tài)的讀取順序)O
A.5/16○B(yǎng).11/16OD.11/4司南杯練習(xí)題163求階[1]Michael
A.Nielsen
&Isaac
L.,Quantum
Computation
and
QuantumInformation,Cambridge
University
Press,201017problem
is
to
determine
the
order
for
some
specified
x
andN.Order-finding
isbelieved
to
be
a
hard
problem
on
a
classical
computer,in
the
sense
that
no
algorithm
is
known
to
solve
the
problem
using
resources
polynomial
in
the
O(L)bits
needed
to
specify
theproblem,where
L=[log(N)]is
the
number
of
bits
needed
to
specify
N.Inthis
sectionwe
explainhowphase
estimationmaybe
used
to
obtain
an
efficient
quantum
algorithmfor
order-finding.For
positive
integers
z
and
N,x<N,with
no
common
factors,the
order
of
z
modulo
Nis
defined
to
be
the
least
positive
integer,r,such
that
x?=1(mod
N).
The
order-finding階
(order)
的定義Exercise5.10:
Show
that
the
order
of
x=5modulo
N=21
is
6.gcd(126,21)=721=7*35?-1mod21=018確定order與相位估計(jì)U|y〉=|xy(mod
N)》,Using
the
phase
estimation
procedure
allows
us
to
obtain,with
high
accuracy,the
cor-responding
eigenvalues
exp(2πis/r),from
which
we
can
obtain
the
order
r
with
a
littlebit
more
work.0≤y≤N-1.)for
integer(5.37)(5.38)(5.39)A
simple
calculation
shows
that
the
states
defined
by
O≤s≤r-1
are
eigenstates
of
U,since19Figure
5.4.Quantum
circuit
for
the
order-finding
algorithm.The
second
register
is
shown
as
being
initialized
tothe
|1〉
state,but
ifthe
method
ofExercise
5.14
is
used,it
can
be
initialized
to
|0>instead.This
circuit
can
also
beused
for
factoring,using
the
reduction
given
in
Section
5.3.2.H⑧t
6rimodNThe
order-finding
algorithmisRegister
1t
qubitsRegister2L
qubitsFTt20求階Algorithm:Quantumorder-findingInputs:(1)AblackboxUa,nwhichperformsthetransformation|j>|k)→
|j〉|x3k
mod
N),for
a
co-prime
to
the
L-bit
number
N,(2) qubits
initialized
to
|0),and(3)L
qubits
initialized
to
the
state
|1).Outputs:Theleastinteger
r>0
such
that
x=1(modN).Runtime:
O(L3)operations.SucceedswithprobabilityO(1).Procedure:1.
|0>|1〉
initial
state2.
createsuperposition3.
apply
Ur,NapplyinverseFouriertransformtofirst4.
register5.
→
8/r
measure
first
register6.
→T
apply
continued
fractionsalgorithm4Shor算法的一般過程22Shor算法Algorithm:Reduction
offactoringtoorder-findingInputs:Acomposite
numberNOutputs:A
non-trivial
factor
of
N.Runtime:O(logN)3)operations.SucceedswithprobabilityO(1).Procedure:1.IfN
is
even,return
the
factor
2.2.DeterminewhetherN=a?forintegers
a≥1
andb≥2,and
ifsoreturnthefactora(usesthe
classical
algorithm
of
Exercise
5.17).3.RandomlychoosezintherangeltoN-1.If
gcd(r,N)>1thenreturnthefactor
gcd(z,N).4.Usethe
order-finding
subroutineto
findthe
order
r
ofxmodulo
N.5.Ifrisevenand
r?/2≠-1(mod
N)then
compute
gcd(x"/2-1,N)andgcd(x/2+1,N),and
test
to
see
if
one
of
these
is
a
non-trivial
factor,returningthatfactorif
so.Otherwise,thealgorithmfails.235Shor算法的實(shí)現(xiàn)24Afull-scaleimplementationofShor'salgorithmtofactoran
L-bitnumberwould
require
aquantum
circuit
with
72L3quantum
gates
acting
on
5L+1
qubits
for
the
order-findingroutine2?
,i.e.factoring
N=21would
require
9000
elementary
quantum
gates
acting
on
26qubits.The
overhead
in
quantum
gates
comes
from
the
modular
exponentiation
function
parBeckman,D.,Chari,A.N.,Devabhaktuni,S.&Preskill,J.Efficient
networks
for
quantumfactoring.Phys.Rev.A54,1034-1063(1996)資源需求25Results■Here
we
present
the
realization
ofa
scalable
Shoralgorithm,as
proposed
by
Kitaev.We
factor
the
number15
by
effectively
employing
and
controlling
seven
qubits
andfour“cache
qubits”and
by
implementing
generalizedarithmetic
operations,known
asmodular
multipliers.This
algorithm
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年安徽礦業(yè)職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考試題帶答案解析
- 2026年常德職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試模擬試題帶答案解析
- 醫(yī)療影像專業(yè)禮儀
- 護(hù)理專業(yè)課程改革
- 2026年福州外語(yǔ)外貿(mào)學(xué)院高職單招職業(yè)適應(yīng)性考試備考題庫(kù)有答案解析
- 財(cái)經(jīng)新聞寫作課件
- 醫(yī)療行業(yè)投資與并購(gòu)分析
- 醫(yī)療糾紛調(diào)解機(jī)制完善總結(jié)
- 2026年安徽揚(yáng)子職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試參考題庫(kù)帶答案解析
- 醫(yī)學(xué)倫理與職業(yè)道德
- 2026年遼寧地質(zhì)工程職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫(kù)附答案
- 麥當(dāng)勞行業(yè)背景分析報(bào)告
- 2025至2030中國(guó)電腦繡花機(jī)行業(yè)深度研究及發(fā)展前景投資評(píng)估分析
- 可靠性驗(yàn)證與評(píng)估流程
- 云南民族大學(xué)附屬高級(jí)中學(xué)2026屆高三聯(lián)考卷(四)英語(yǔ)+答案
- 2025年翔安區(qū)社區(qū)專職工作者招聘?jìng)淇碱}庫(kù)及一套參考答案詳解
- 2025年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)別墅電梯市場(chǎng)發(fā)展前景預(yù)測(cè)及投資戰(zhàn)略咨詢報(bào)告
- 2026年中級(jí)注冊(cè)安全工程師之安全實(shí)務(wù)化工安全考試題庫(kù)300道及答案【考點(diǎn)梳理】
- 請(qǐng)人收錢辦事協(xié)議書
- 結(jié)核性支氣管狹窄的診治及護(hù)理
- 2025年融資融券業(yè)務(wù)模擬考試題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論