云南省楚雄州大姚縣第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁(yè)
云南省楚雄州大姚縣第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁(yè)
云南省楚雄州大姚縣第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁(yè)
云南省楚雄州大姚縣第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁(yè)
云南省楚雄州大姚縣第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省楚雄州大姚縣第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線經(jīng)過(guò)點(diǎn),且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.102.下面四個(gè)說(shuō)法中,正確說(shuō)法的個(gè)數(shù)為()(1)如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合;(2)兩條直線可以確定一個(gè)平面;(3)若,,,則;(4)空間中,兩兩相交的三條直線在同一平面內(nèi).A.1 B.2C.3 D.43.空間直角坐標(biāo)系中、、)、,其中,,,,已知平面平面,則平面與平面間的距離為()A. B.C. D.4.甲烷是一種有機(jī)化合物,分子式為,其在自然界中分布很廣,是天然氣、沼氣的主要成分.如圖所示的為甲烷的分子結(jié)構(gòu)模型,已知任意兩個(gè)氫原子之間的距離(H-H鍵長(zhǎng))相等,碳原子到四個(gè)氫原子的距離(C-H鍵長(zhǎng))均相等,任意兩個(gè)H-C-H鍵之間的夾角為(鍵角)均相等,且它的余弦值為,即,若,則以這四個(gè)氫原子為頂點(diǎn)的四面體的體積為()A. B.C. D.5.入冬以來(lái),梁老師準(zhǔn)備了4個(gè)不同的烤火爐,全部分發(fā)給樓的三個(gè)辦公室(每層樓各有一個(gè)辦公室).1,2樓的老師反映辦公室有點(diǎn)冷,所以1,2樓的每個(gè)辦公室至少需要1個(gè)烤火隊(duì),3樓老師表示不要也可以.則梁老師共有多少種分發(fā)烤火爐的方法()A.108 B.36C.50 D.866.過(guò)橢圓+=1左焦點(diǎn)F1引直線交橢圓于A、B兩點(diǎn),F(xiàn)2是橢圓的右焦點(diǎn),則△ABF2的周長(zhǎng)是()A.20 B.18C.10 D.167.已知,,若直線上存在點(diǎn)P,滿足,則l的傾斜角的取值范圍是()A. B.C D.8.已知等比數(shù)列的前項(xiàng)和為,若,,則()A.20 B.30C.40 D.509.小明騎車(chē)上學(xué),開(kāi)始時(shí)勻速行駛,途中因交通堵塞停留了一段時(shí)間,后為了趕時(shí)間加快速度行駛.與以上事件吻合得最好的圖象是()A. B.C. D.10.命題“”的一個(gè)充要條件是()A. B.C. D.11.若,滿足約束條件則的最大值是A.-8 B.-3C.0 D.112.設(shè),是橢圓C:的左、右焦點(diǎn),若橢圓C上存在一點(diǎn)P,使得,則橢圓C的離心率e的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與直線垂直,則__________14.在空間直角坐標(biāo)系中,已知點(diǎn)A,若點(diǎn)P滿足,則_______15.已知函數(shù),則曲線在點(diǎn)處的切線方程為_(kāi)_____.16.如圖,棱長(zhǎng)為1的正方體,點(diǎn)沿正方形按的方向作勻速運(yùn)動(dòng),點(diǎn)沿正方形按的方向以同樣的速度作勻速運(yùn)動(dòng),且點(diǎn)分別從點(diǎn)A與點(diǎn)同時(shí)出發(fā),則的中點(diǎn)的軌跡所圍成圖形的面積大小是________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線的焦點(diǎn)為F,點(diǎn)在拋物線上.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線交拋物錢(qián)C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),記直線OA,OB的斜率分別,,求證:為定值.18.(12分)在平面直角坐標(biāo)系中,動(dòng)點(diǎn),滿足,記點(diǎn)的軌跡為(1)請(qǐng)說(shuō)明是什么曲線,并寫(xiě)出它的方程;(2)設(shè)不過(guò)原點(diǎn)且斜率為的直線與交于不同的兩點(diǎn),,線段的中點(diǎn)為,直線與交于兩點(diǎn),,請(qǐng)判斷與的關(guān)系,并證明你的結(jié)論19.(12分)已知橢圓E的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò),,三點(diǎn),求橢圓E的標(biāo)準(zhǔn)方程20.(12分)已知橢圓的離心率為,點(diǎn)是橢圓E上一點(diǎn).(1)求E的方程;(2)設(shè)過(guò)點(diǎn)的動(dòng)直線與橢圓E相交于兩點(diǎn),O為坐標(biāo)原點(diǎn),求面積的取值范圍.21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD,,,且,,點(diǎn)E為棱PC的動(dòng)點(diǎn).(1)當(dāng)點(diǎn)E是棱PC的中點(diǎn)時(shí),求直線BE與平面PBD所成角的正弦值;(2)若E為棱PC上任一點(diǎn),滿足,求二面角P-AB-E的余弦值.22.(10分)已知橢圓,焦點(diǎn),A,B是上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),的周長(zhǎng)的最小值為(1)求的方程;(2)直線FA與交于點(diǎn)M(異于點(diǎn)A),直線FB與交于點(diǎn)N(異于點(diǎn)B),證明:直線MN過(guò)定點(diǎn)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由已知設(shè)雙曲線方程為:,代入求得,計(jì)算即可得出離心率.【詳解】雙曲線經(jīng)過(guò)點(diǎn),且它的兩條漸近線方程是,設(shè)雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A2、A【解析】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,即可判斷;利用兩條異面直線不能確定一個(gè)平面即可判斷;利用平面的基本性質(zhì)中的公理判斷即可;若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),即可判斷.【詳解】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,故(1)不正確;兩條異面直線不能確定一個(gè)平面,故(2)不正確;利用平面的基本性質(zhì)中的公理判斷(3)正確;空間中,若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),故(4)不正確,綜上所述只有一個(gè)說(shuō)法是正確的,故選:A【點(diǎn)睛】本題主要考查了空間中點(diǎn),線,面的位置關(guān)系.屬于較易題.3、A【解析】由已知得,,,設(shè)向量與向量、都垂直,由向量垂直的坐標(biāo)運(yùn)算可求得,再由平面平行和距離公式計(jì)算可得選項(xiàng).【詳解】解:由已知得,,,設(shè)向量與向量、都垂直,則,即,取,,又平面平面,則平面與平面間的距離為,故選:A.4、A【解析】利用余弦定理求得,計(jì)算出正四面體的高,從而計(jì)算出正四面體的體積.【詳解】設(shè),則由余弦定理知:,解得,故該正四面體的棱長(zhǎng)均為由正弦定理可知:該正四面體底面外接圓的半徑,高故該正四面體的體積為故選:A5、C【解析】運(yùn)用分類(lèi)計(jì)數(shù)原理,結(jié)合組合數(shù)定義進(jìn)行求解即可.【詳解】當(dāng)3樓不要烤火爐時(shí),不同的分發(fā)烤火爐的方法為:;當(dāng)3樓需要1個(gè)烤火爐時(shí),不同的分發(fā)烤火爐的方法為:;當(dāng)3樓需要2個(gè)烤火爐時(shí),不同的分發(fā)烤火爐的方法為:,所以分發(fā)烤火爐的方法總數(shù)為:,故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用分類(lèi)計(jì)數(shù)原理是解題的關(guān)鍵.6、A【解析】根據(jù)橢圓的定義求得正確選項(xiàng).【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長(zhǎng)為.故選:A7、A【解析】根據(jù)題意,求得直線恒過(guò)的定點(diǎn),數(shù)形結(jié)合只需求得線段與直線有交點(diǎn)時(shí)的斜率,結(jié)合斜率和傾斜角的關(guān)系即可求得結(jié)果.【詳解】對(duì)直線,變形為,故其恒過(guò)定點(diǎn),若直線存在點(diǎn)P,滿足,只需直線與線段有交點(diǎn)即可.數(shù)形結(jié)合可知,當(dāng)直線過(guò)點(diǎn)時(shí),其斜率取得最大值,此時(shí),對(duì)應(yīng)傾斜角;當(dāng)直線過(guò)點(diǎn)時(shí),其斜率取得最小值,此時(shí),對(duì)應(yīng)傾斜角為.根據(jù)斜率和傾斜角的關(guān)系,要滿足題意,直線的傾斜角的范圍為:.故選:A.8、B【解析】根據(jù)等比數(shù)列前項(xiàng)和的性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭堑缺葦?shù)列,所以成等比數(shù)列,即成等比數(shù)列,顯然,故選:B9、C【解析】先研究四個(gè)選項(xiàng)中圖象的特征,再對(duì)照小明上學(xué)路上的運(yùn)動(dòng)特征,兩者對(duì)應(yīng)即可選出正確選項(xiàng).【詳解】考查四個(gè)選項(xiàng),橫坐標(biāo)表示時(shí)間,縱坐標(biāo)表示的是離開(kāi)學(xué)校的距離,由此知,此函數(shù)圖象一定是下降的,由此排除A;再由小明騎車(chē)上學(xué),開(kāi)始時(shí)勻速行駛可得出圖象開(kāi)始一段是直線下降型,又途中因交通堵塞停留了一段時(shí)間,故此時(shí)有一段函數(shù)圖象與x軸平行,由此排除D,之后為了趕時(shí)間加快速度行駛,此一段時(shí)間段內(nèi)函數(shù)圖象下降的比較快,由此可確定C正確,B不正確故選C【點(diǎn)睛】本題考查函數(shù)的表示方法,關(guān)鍵是理解坐標(biāo)系的度量與小明上學(xué)的運(yùn)動(dòng)特征,屬于基礎(chǔ)題.10、D【解析】結(jié)合不等式的基本性質(zhì),利用充分條件和必要條件的定義判斷.【詳解】A.當(dāng)時(shí),滿足,推不出,故不充分;B.當(dāng)時(shí),滿足,推不出,故不充分;C.當(dāng)時(shí),推不出,故不必要;D.因?yàn)?,故充要,故選:D11、C【解析】作出可行域,把變形為,平移直線過(guò)點(diǎn)時(shí),最大.【詳解】作出可行域如圖:由得:,作出直線,平移直線過(guò)點(diǎn)時(shí),.故選C.【點(diǎn)睛】本題主要考查了簡(jiǎn)單線性規(guī)劃問(wèn)題,屬于中檔題.12、B【解析】先設(shè),根據(jù)P在橢圓上得到,由,得到的范圍,即為離心率的范圍.【詳解】由橢圓的方程可得,,設(shè),由,則,即,由P在橢圓上可得,所以,代入可得所以,因?yàn)?,所以整理可得:,消去得:所以,即所?故選:B二、填空題:本題共4小題,每小題5分,共20分。13、-3【解析】因?yàn)橹本€與直線垂直,所以考點(diǎn):本題考查兩直線垂直的充要條件點(diǎn)評(píng):若兩直線方程分別為,則他們垂直的充要條件是14、【解析】設(shè),表示出,,根據(jù)即可得到方程組,解得、、,即可求出的坐標(biāo),即可得到的坐標(biāo),最后根據(jù)向量模的坐標(biāo)表示計(jì)算可得;【詳解】解:設(shè),所以,,因?yàn)?,所以,所以,解得,即,所以,所以;故答案為?5、【解析】先求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義求函數(shù)在處的切線方程.【詳解】,,,所以曲線在點(diǎn)處的切線方程為,即.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,重點(diǎn)考查計(jì)算能力,屬于基礎(chǔ)題型.16、##【解析】畫(huà)出符合要求的圖形,觀察得到軌跡是菱形,并進(jìn)行充分性和必要性?xún)煞矫娴淖C明,并求解出軌跡圖形的面積.【詳解】如圖,分別是正方形ABCD,,的中心,下面進(jìn)行證明:菱形EFGC的周界即為動(dòng)線段PQ的中點(diǎn)H的軌跡,首先證明:如果點(diǎn)H是動(dòng)線段PQ的中點(diǎn),那么點(diǎn)H必在菱形EFGC的周界上,分兩種情況證明:(1)P,Q分別在某一個(gè)定角的兩邊上,不失一般性,設(shè)P從B到C,而Q同時(shí)從到C,由于速度相同,所以PQ必平行于,故PQ的中點(diǎn)H必在上;(2)P,Q分別在兩條異面直線上,不失一般性,設(shè)P從A到B,同時(shí)Q從到,由于速度相同,則,由于H為PQ的中點(diǎn),連接并延長(zhǎng),交底面ABCD于點(diǎn)T,連接PT,則平面與平面交線是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,從而T在AC上,可以證明FH∥AC,GH∥AC,DG∥AC,基于平行線的唯一性,顯然H在DG上,綜合(1)(2)可證明,線段PQ的中點(diǎn)一定在菱形EFGC的周界上;下面證明:如果點(diǎn)H在菱形EFGC的周界上,則點(diǎn)H必定是符合條件的線段的中點(diǎn).也分兩種情況進(jìn)行證明:(1)H在CG或CE上,過(guò)點(diǎn)H作PQ∥(或BD),而與BC及(或CD及BC)分別相交于P和Q,由相似的性質(zhì)可得:PH=QH,即H是PQ的中點(diǎn),同時(shí)可證:BP=(或BQ=DP),因此P、Q符合題設(shè)條件(2)H在EF或FG上,不失一般性,設(shè)H在FG上,連接并延長(zhǎng),交平面AC于點(diǎn)T,顯然T在AC上,過(guò)T作TP∥CB于點(diǎn)P,則TP∥,在平面上,連接PH并延長(zhǎng),交于點(diǎn)Q,在三角形中,G是的中點(diǎn),∥AC,則H是的中點(diǎn),于是,從而有,又因?yàn)門(mén)P∥CB,,所以,從而,因此P,Q符合題設(shè)條件.由(1)(2),如果H是菱形EFGC周界上的任一點(diǎn),則H必是符合題設(shè)條件的動(dòng)線段PQ的中點(diǎn),證畢.因?yàn)樗倪呅螢榱庑?,其中,所以邊長(zhǎng)為且,為等邊三角形,,所以面積.故答案為:【點(diǎn)睛】對(duì)于立體幾何軌跡問(wèn)題,要畫(huà)出圖形,并要善于觀察,利用所學(xué)的立體幾何方面的知識(shí),大膽猜測(cè),小心驗(yàn)證,對(duì)于多種情況的,要畫(huà)出相應(yīng)的圖形,注意分類(lèi)討論.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】(1)將點(diǎn)代入拋物線方程即可求解;(2)當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為,,將直線方程與拋物線方程聯(lián)立利用韋達(dá)定理即可求出的值;當(dāng)直線AB的斜率不存在時(shí),由過(guò)點(diǎn)即可求出點(diǎn)和點(diǎn)的坐標(biāo),即可求出的值.【小問(wèn)1詳解】將點(diǎn)代入得,,∴拋物線的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】當(dāng)直線AB斜率存在時(shí),設(shè)直線AB的方程為,,將聯(lián)立得,,由韋達(dá)定理得:,,,當(dāng)直線AB的斜率不存在時(shí),由直線過(guò)點(diǎn),則,,,,綜上所述可知,為定值為.18、(1)橢圓,(2),證明見(jiàn)解析【解析】(1)結(jié)合橢圓第一定義直接判斷即可求出的軌跡為;(2)設(shè)直線的方程為,,,聯(lián)立橢圓方程,寫(xiě)出韋達(dá)定理;由中點(diǎn)公式求出點(diǎn),進(jìn)而得出直線方程,聯(lián)立橢圓方程求出,結(jié)合弦長(zhǎng)公式可求,可轉(zhuǎn)化為,結(jié)合韋達(dá)定理可化簡(jiǎn),進(jìn)而得證.【小問(wèn)1詳解】設(shè),,則因?yàn)椋瑵M足,即動(dòng)點(diǎn)表示以點(diǎn),為左、右焦點(diǎn),長(zhǎng)軸長(zhǎng)為4,焦距為的橢圓,其軌跡的方程為;【小問(wèn)2詳解】可以判斷出,下面進(jìn)行證明:設(shè)直線的方程為,,,由方程組,得①,方程①判別式為,由,即,解得且由①得,,所以點(diǎn)坐標(biāo)為,直線方程為,由方程組,得,,所以又所以.19、【解析】分橢圓的焦點(diǎn)在軸上與焦點(diǎn)在軸上,兩種情況討論,利用待定系數(shù)法求出橢圓方程;【詳解】解:(1)當(dāng)橢圓的焦點(diǎn)在軸上時(shí),設(shè)其方程為(),則又點(diǎn)C在橢圓上,得,解得,所以橢圓E的方程為(2)當(dāng)橢圓的焦點(diǎn)在軸上時(shí),設(shè)其方程為(),則又點(diǎn)C在橢圓上,得,解得,這與矛盾綜上可知,橢圓的方程為20、(1);(2).【解析】(1)列出關(guān)于a、b、c的方程組即可求解;(2)根據(jù)題意,直線l斜率存在,設(shè)其方程為,代入橢圓方程消去y得到關(guān)于x的二次方程,根據(jù)韋達(dá)定理得到根與系數(shù)的關(guān)系,求出PQ長(zhǎng)度,求出原點(diǎn)到l的距離,根據(jù)三角形面積公式表示出△OPQ的面積,利用基本不等式求解其范圍即可.【小問(wèn)1詳解】由題設(shè)知,解得.∴橢圓E的方程為;【小問(wèn)2詳解】當(dāng)軸時(shí)不合題意,故可設(shè),則,得.由題意知,即,得.從而.又點(diǎn)O到直線的距離,∴,令,則,,,所求面積的取值范圍為.21、(1)(2)【解析】(1)由題意可得兩兩垂直,所以以為原點(diǎn),以所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解,(2)設(shè),表示出點(diǎn)的坐標(biāo),然后根據(jù)求出的值,從而可得點(diǎn)的坐標(biāo),然后利用空間向量求二面角【小問(wèn)1詳解】因?yàn)榈酌鍭BCD,平面,所以因?yàn)椋詢(xún)蓛纱怪?,所以以為原點(diǎn),以所在的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論