版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省重點(diǎn)六校協(xié)作體2026屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是等比數(shù)列,則()A.數(shù)列是等差數(shù)列 B.數(shù)列是等比數(shù)列C.數(shù)列是等差數(shù)列 D.數(shù)列是等比數(shù)列2.在等差數(shù)列{an}中,a1=1,,則a7=()A.13 B.14C.15 D.163.若數(shù)列滿足,則的值為()A.2 B.C. D.4.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實(shí)數(shù)a的取值范圍為()A. B.C. D.5.已知函數(shù),則滿足不等式的的取值范圍是()A. B.C. D.6.如圖,P為圓錐的頂點(diǎn),O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長(zhǎng)為2的等邊三角形,是底面圓的內(nèi)接正三角形.則()A. B.C. D.7.已知等比數(shù)列滿足,則()A.168 B.210C.672 D.10508.如圖,在平行六面體中,,則與向量相等的是()A. B.C. D.9.兩條平行直線與之間的距離為()A. B.C. D.10.若拋物線x=﹣my2的焦點(diǎn)到準(zhǔn)線的距離為2,則m=()A.﹣4 B.C. D.±11.若函數(shù)在區(qū)間內(nèi)存在最大值,則實(shí)數(shù)的取值范圍是()A. B.C. D.12.已知分別是橢圓的左,右焦點(diǎn),點(diǎn)M是橢圓C上的一點(diǎn),且的面積為1,則橢圓C的短軸長(zhǎng)為()A.1 B.2C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;(2)在銳角三角形中,角,,所對(duì)的邊分別為,,,若,,,求的面積14.在圓M:中,過(guò)點(diǎn)的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積為___________.15.如圖,在三棱錐中,,二面角的余弦值為,若三棱錐的體積為,則三棱錐外接球的表面積為______16.若實(shí)數(shù)、滿足,則的取值范圍為___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知等差數(shù)列中,首項(xiàng),公差,且數(shù)列的前項(xiàng)和為(1)求和;(2)設(shè),求數(shù)列的前項(xiàng)和18.(12分)已知直線與直線交于點(diǎn).(1)求過(guò)點(diǎn)且平行于直線的直線的方程,并求出兩平行直線間的距離;(2)求過(guò)點(diǎn)并且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線的方程.19.(12分)如圖,已知四棱臺(tái)的上、下底面分別是邊長(zhǎng)為2和4的正方形,,且底面,點(diǎn)分別在棱、上·(1)若P是的中點(diǎn),證明:;(2)若平面,二面角的余弦值為,求四面體的體積20.(12分)已知數(shù)列和中,,且,.(1)寫出,,,,猜想數(shù)列和的通項(xiàng)公式并證明;(2)若對(duì)于任意都有,求的取值范圍.21.(12分)已知數(shù)列的前項(xiàng)和為,且(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和22.(10分)已知函數(shù)(Ⅰ)求的單調(diào)區(qū)間和最值;(Ⅱ)設(shè),證明:當(dāng)時(shí),
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】取,可判斷AC選項(xiàng);利用等比數(shù)列的定義可判斷B選項(xiàng);取可判斷D選項(xiàng).【詳解】若,則、無(wú)意義,A錯(cuò)C錯(cuò);設(shè)等比數(shù)列的公比為,則,(常數(shù)),故數(shù)列是等比數(shù)列,B對(duì);取,則,數(shù)列為等比數(shù)列,因?yàn)?,,,且,所以,?shù)列不是等比數(shù)列,D錯(cuò).故選:B.2、A【解析】利用等差數(shù)列的基本量,即可求解.【詳解】設(shè)等差數(shù)列的公差為,,解得:,則.故選:A3、C【解析】通過(guò)列舉得到數(shù)列具有周期性,,所以.詳解】,同理可得:,可得,則.故選:C.4、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因?yàn)?,所以所以可得在上恒成立,即在上恒成立,故只需,,?dāng)時(shí),,故故選:B5、A【解析】利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,根據(jù)單調(diào)性即可解不等式【詳解】由則函數(shù)在上單調(diào)遞增又,所以,解得故選:A6、B【解析】先求出,再利用向量的線性運(yùn)算和數(shù)量積計(jì)算求解.【詳解】解:由題得,,故選:B7、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得,再根據(jù),即可求得結(jié)果.【詳解】等比數(shù)列滿足,設(shè)等比數(shù)列的公比為q,所以,解得,故,故選:C8、A【解析】根據(jù)空間向量的線性運(yùn)算法則——三角形法,準(zhǔn)確運(yùn)算,即可求解.【詳解】由題意,在平行六面體中,,可得.故選:A.9、D【解析】由已知有,所以直線可化為,利用兩平行直線距離公式有,選D.點(diǎn)睛:本題主要考查兩平行直線間的距離公式,屬于易錯(cuò)題.在用兩平行直線距離公式時(shí),兩直線中的系數(shù)要相同,不然不能用此公式計(jì)算10、D【解析】把拋物線的方程化為標(biāo)準(zhǔn)方程,由焦點(diǎn)到準(zhǔn)線的距離為,即可得到結(jié)果,得到答案.【詳解】由題意,拋物線,可得,又由拋物線的焦點(diǎn)到準(zhǔn)線的距離為2,即,解得.故選D.【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,以及簡(jiǎn)單的幾何性質(zhì)的應(yīng)用,其中解答中熟記拋物線的焦點(diǎn)到準(zhǔn)線的距離為是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.11、A【解析】利用函數(shù)的導(dǎo)數(shù),求解函數(shù)的極值,推出最大值,然后轉(zhuǎn)化列出不等式組求解的范圍即可【詳解】,或,∴在單調(diào)遞減,在單調(diào)遞增,在單調(diào)遞減,∴f(x)有極大值,要使f(x)在上有最大值,則極大值3即為該最大值,則,又或,∴,綜上,.故選:A.12、B【解析】首先分別設(shè),,再根據(jù)橢圓的定義和性質(zhì)列出等式,即可求解橢圓的短軸長(zhǎng).【詳解】設(shè),,所以,即,即,得,短軸長(zhǎng)為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、(1)最小正周期,,;(2)【解析】(1)根據(jù)降冪公式、輔助角公式化簡(jiǎn)函數(shù)的解析式,再利用正弦型函數(shù)的最小正周期公式、單調(diào)性進(jìn)行求解即可;(2)根據(jù)特殊角的三角函數(shù)值,結(jié)合三角形面積公式進(jìn)行求解即可.【詳解】(1),所以的最小正周期令,,解得,,所以的單調(diào)遞增區(qū)間為,(2)因?yàn)?,所以,即,又,所以,所以或,或,?dāng)時(shí),,不符合題意,舍去;當(dāng)時(shí),,符合題意,所以,,,,此時(shí)為等腰三角形,所以,所以,即的面積為14、【解析】首先將圓的方程配成標(biāo)準(zhǔn)式,即可得到圓心坐標(biāo)與半徑,從而可得點(diǎn)在圓內(nèi),即可得到過(guò)點(diǎn)的最長(zhǎng)弦、最短弦弦長(zhǎng),即可求出四邊形的面積;【詳解】解:圓M:,即,圓心,半徑,點(diǎn),則,所以點(diǎn)在圓內(nèi),所以過(guò)點(diǎn)的最長(zhǎng)弦,又,所以最短弦,所以故答案為:15、【解析】取的中點(diǎn),連接,,過(guò)點(diǎn)A作,垂足為,設(shè),利用三角形的邊角關(guān)系求出,利用錐體的體積公式求出的值,確定三棱錐外接球的球心,求解外接球的半徑,由表面積公式求解即可【詳解】取的中點(diǎn),連接,,過(guò)點(diǎn)A作,交DE的延長(zhǎng)線于點(diǎn),所以為二面角的平面角,設(shè),則,,所以,所以,EH=,因?yàn)槿忮F的體積為,所以,解得:,,設(shè)外接圓的圓心為,三棱錐外接球的球心為,連接,,,過(guò)點(diǎn)O作OF⊥AH于點(diǎn)F,則,,,,設(shè),則,,由勾股定理得:,解得:,所以三棱錐外接球的半徑滿足,則三棱錐的外接球的表面積為故答案為:【點(diǎn)睛】本題考查了幾何體的外接球問(wèn)題,棱錐的體積公式的理解與應(yīng)用,解題的關(guān)鍵是確定外接球球心的位置,三棱錐的外接球的球心在過(guò)各面外心且與此面垂直的直線上,由此結(jié)論可以找到外接球的球心,16、【解析】直接利用換元法以及基本不等式,求出結(jié)果【詳解】解:設(shè),由于,所以,由于,(當(dāng)且僅當(dāng)時(shí)取等號(hào))所以(當(dāng)且僅當(dāng)時(shí)取等號(hào)),(當(dāng)且僅當(dāng)時(shí)取等號(hào)),故,,所以,整理得:故的取值范圍為的取值范圍故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2).【解析】(1)根據(jù)題意,結(jié)合等差數(shù)列的通項(xiàng)公式與求和公式,即可求解;(2)根據(jù)題意,求出,結(jié)合等差數(shù)列求和公式,即可求解.【小問(wèn)1詳解】根據(jù)題意,易知;.【小問(wèn)2詳解】根據(jù)題意,易知,因?yàn)?,所以?shù)列是首項(xiàng)為2,公差為的等差數(shù)列,故18、(1);.(2)或.【解析】(1)首先求得交點(diǎn)坐標(biāo),然后利用待定系數(shù)法確定直線方程,再根據(jù)兩平行直線之間距離公式即可計(jì)算距離;(2)根據(jù)截距式方程的求法解答【小問(wèn)1詳解】由得設(shè)直線的方程為,代入點(diǎn)坐標(biāo)得,∴直線的方程為∴兩平行線間的距離【小問(wèn)2詳解】當(dāng)直線過(guò)坐標(biāo)原點(diǎn)時(shí),直線的方程為,即;當(dāng)直線不過(guò)坐標(biāo)原點(diǎn)時(shí),設(shè)直線的方程為,代入點(diǎn)坐標(biāo)得,∴直線的方程的方程為,即綜上所述,直線的方程為或19、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,利用空間向量的坐標(biāo)運(yùn)算知,即可證得結(jié)論;(2)利用空間向量結(jié)合已知的面面角余弦值可求得,再利用線面平行的已知條件求得,再將四面體視為以為底面的三棱錐,利用錐體的體積公式即可得解.【小問(wèn)1詳解】以為坐標(biāo)原點(diǎn),,,所在直線分別為,,軸建立空間直角坐標(biāo)系,則,,,,設(shè),其中,,若是的中點(diǎn),則,,,于是,∴,即【小問(wèn)2詳解】由題設(shè)知,,,是平面內(nèi)的兩個(gè)不共線向量設(shè)是平面的一個(gè)法向量,則,取,得又平面的一個(gè)法向量是,∴,而二面角的余弦值為,因此,解得或(舍去),此時(shí)設(shè),而,由此得點(diǎn),,∵平面,且平面的一個(gè)法向量是,∴,即,解得,從而將四面體視為以為底面的三棱錐,則其高,故四面體的體積【點(diǎn)睛】方法點(diǎn)睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對(duì)應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過(guò)計(jì)算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.20、(1),,,證明見解析(2)【解析】(1)已知兩式相加化簡(jiǎn)可得是首項(xiàng)為2,公比為2的等比數(shù)列,則,兩式相減化簡(jiǎn)可得是首項(xiàng)為2,公差為2的等差數(shù)列,則,(2)由題意可得只需要,令,由和解不等式可求出的最小值,從而可求得的取值范圍【小問(wèn)1詳解】由已知得,猜想,,由題得,所以易知,即所以是首項(xiàng)為2,公比為2的等比數(shù)列,故,由題得,所以,即,所以是首項(xiàng)為2,公差為2的等差數(shù)列,所以.【小問(wèn)2詳解】因?yàn)槿我舛加?,即,只需要,記,易知,故,?dāng)時(shí),,解得或,當(dāng)時(shí),,解得,因?yàn)?,所以,所以,所以的取值范圍?21、(1)(2)【解析】(1)結(jié)合作差法可直接求解;(2)由錯(cuò)位相減法可直接求解.【小問(wèn)1詳解】當(dāng)時(shí),;當(dāng)時(shí),,當(dāng)時(shí),滿足上式,所以;【小問(wèn)2詳解】由(1)知,所以①,②,①-②得,所以.22、(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;最小值為,無(wú)最大值;(Ⅱ)證明見解析【解析】(Ⅰ)根據(jù)導(dǎo)函數(shù)的正負(fù)即可確定單調(diào)區(qū)間,由單調(diào)性可得最值點(diǎn);(Ⅱ)構(gòu)造函數(shù),利用導(dǎo)數(shù)可確定單調(diào)性,結(jié)合的正
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年北京經(jīng)濟(jì)技術(shù)開發(fā)區(qū)教育領(lǐng)域面向應(yīng)屆畢業(yè)生公開招聘事業(yè)單位工作人員29人備考題庫(kù)及答案詳解1套
- 2026年安能集團(tuán)二局電力建設(shè)發(fā)展(廈門)有限公司招聘?jìng)淇碱}庫(kù)及參考答案詳解一套
- 2026年安順市人民醫(yī)院面向社會(huì)公開招聘編外聘用專業(yè)技術(shù)人員70人備考題庫(kù)及完整答案詳解一套
- 2026年南安市衛(wèi)生事業(yè)單位赴福建醫(yī)科大學(xué)公開招聘編制內(nèi)衛(wèi)生類工作人員備考題庫(kù)及1套參考答案詳解
- 2026年立體交通對(duì)橋梁工程需求的推動(dòng)
- 2026年三穗縣融媒體中心公開招聘5名臨聘人員備考題庫(kù)完整參考答案詳解
- 2026年安溪縣部分公辦學(xué)校赴華中師范大學(xué)公開招聘編制內(nèi)新任教師備考題庫(kù)及答案詳解一套
- 2026年北京中紡化工股份有限公司招聘?jìng)淇碱}庫(kù)及參考答案詳解1套
- 2026年內(nèi)蒙古電投能源股份有限公司礦山機(jī)電設(shè)備檢修公司招聘?jìng)淇碱}庫(kù)及完整答案詳解1套
- 2026年廣州市白云區(qū)政務(wù)服務(wù)和數(shù)據(jù)管理局政府雇員招聘?jìng)淇碱}庫(kù)及答案詳解1套
- (2025年)四川省自貢市紀(jì)委監(jiān)委公開遴選公務(wù)員筆試試題及答案解析
- 2026屆江蘇省常州市高一上數(shù)學(xué)期末聯(lián)考模擬試題含解析
- 《生態(tài)環(huán)境重大事故隱患判定標(biāo)準(zhǔn)》解析
- 移動(dòng)通信基站天線基礎(chǔ)知識(shí)專題培訓(xùn)課件
- 《軍隊(duì)政治工作手冊(cè)》出版
- 電子商務(wù)專業(yè)教師教學(xué)創(chuàng)新團(tuán)隊(duì)建設(shè)方案
- 智慧校園網(wǎng)投資建設(shè)運(yùn)營(yíng)方案
- 2023年中國(guó)海洋大學(xué)環(huán)科院研究生培養(yǎng)方案
- GB/T 16927.1-2011高電壓試驗(yàn)技術(shù)第1部分:一般定義及試驗(yàn)要求
- DB32∕T 4107-2021 民用建筑節(jié)能工程熱工性能現(xiàn)場(chǎng)檢測(cè)標(biāo)準(zhǔn)
- OECD稅收協(xié)定范本中英對(duì)照文本
評(píng)論
0/150
提交評(píng)論