2026屆云南省大理、麗江、怒江高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁(yè)
2026屆云南省大理、麗江、怒江高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁(yè)
2026屆云南省大理、麗江、怒江高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁(yè)
2026屆云南省大理、麗江、怒江高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁(yè)
2026屆云南省大理、麗江、怒江高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆云南省大理、麗江、怒江高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)是雙曲線的兩個(gè)焦點(diǎn),是雙曲線上的一點(diǎn),且,則的面積等于()A. B.C.24 D.482.已知四面體,所有棱長(zhǎng)均為2,點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則()A.1 B.2C.-1 D.-23.已知,,若,則()A.6 B.11C.12 D.224.在中國(guó),周朝時(shí)期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并證明此定理的為公元前世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他們用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和.若一個(gè)直角三角形的斜邊長(zhǎng)等于則這個(gè)直角三角形周長(zhǎng)的最大值為()A. B.C. D.5.已知函數(shù)為偶函數(shù),則在處的切線方程為()A. B.C. D.6.已知是兩個(gè)數(shù)1,9的等比中項(xiàng),則圓錐曲線的離心率為()A.或 B.或C. D.7.在中國(guó)共產(chǎn)黨建黨100周年之際,廣安市某中學(xué)組織了“黨史知識(shí)競(jìng)賽”活動(dòng),已知該校共有高中學(xué)生1000人,用分層抽樣的方法從該校高中學(xué)生中抽取一個(gè)容量為25的樣本參加活動(dòng),其中高二年級(jí)抽取了8人,則該校高二年級(jí)學(xué)生人數(shù)為()A.960 B.720C.640 D.3208.函數(shù)在上的最大值是A. B.C. D.9.在一個(gè)數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的和都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做“等和數(shù)列”,這個(gè)數(shù)叫做數(shù)列的公和.已知等和數(shù)列{an}中,,公和為5,則()A.2 B.﹣2C.3 D.﹣310.是橢圓的焦點(diǎn),點(diǎn)在橢圓上,點(diǎn)到的距離為1,則到的距離為()A.3 B.4C.5 D.611.函數(shù)的值域?yàn)椋ǎ〢. B.C. D.12.設(shè),,,…,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若向量與向量平行,則實(shí)數(shù)______14.參加數(shù)學(xué)興趣小組的小何同學(xué)在打籃球時(shí),發(fā)現(xiàn)當(dāng)籃球放在地面上時(shí),籃球的斜上方燈泡照過(guò)來(lái)的光線使得籃球在地面上留下的影子有點(diǎn)像數(shù)學(xué)課堂上學(xué)過(guò)的橢圓,但他自己還是不太確定這個(gè)想法,于是回到家里翻閱了很多參考資料,終于明白自己的猜想是沒有問(wèn)題的,而且通過(guò)學(xué)習(xí),他還確定地面和籃球的接觸點(diǎn)(切點(diǎn))就是影子橢圓的焦點(diǎn).他在家里做了個(gè)探究實(shí)驗(yàn):如圖所示,桌面上有一個(gè)籃球,若籃球的半徑為個(gè)單位長(zhǎng)度,在球的右上方有一個(gè)燈泡(當(dāng)成質(zhì)點(diǎn)),燈泡與桌面的距離為個(gè)單位長(zhǎng)度,燈泡垂直照射在平面的點(diǎn)為,影子橢圓的右頂點(diǎn)到點(diǎn)的距離為個(gè)單位長(zhǎng)度,則這個(gè)影子橢圓的離心率______.15.在空間直角坐標(biāo)系中,點(diǎn)到x軸的距離為___________.16.由曲線圍成的圖形的面積為_______________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列滿足,記數(shù)列的前項(xiàng)和為,且,(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前100項(xiàng)和18.(12分)如圖,在四棱錐中,底面為正方形,,直線垂直于平面分別為的中點(diǎn),直線與相交于點(diǎn).(1)證明:與不垂直;(2)求二面角的余弦值.19.(12分)已知以點(diǎn)為圓心的圓與直線相切,過(guò)點(diǎn)的動(dòng)直線l與圓A相交于M,N兩點(diǎn)(1)求圓A的方程(2)當(dāng)時(shí),求直線l方程20.(12分)如圖,中,且,將沿中位線EF折起,使得,連結(jié)AB,AC,M為AC的中點(diǎn).(1)證明:平面ABC;(2)求二面角的余弦值.21.(12分)某校高二年級(jí)全體學(xué)生參加了一次數(shù)學(xué)測(cè)試,學(xué)校利用簡(jiǎn)單隨機(jī)抽樣方法從甲班、乙班各抽取五名同學(xué)的數(shù)學(xué)測(cè)試成績(jī)(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,求此兩人都來(lái)自甲班的概率.22.(10分)已知橢圓的左焦點(diǎn)為F,右頂點(diǎn)為,M是橢圓上一點(diǎn).軸且(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)直線與橢圓C交于E,H兩點(diǎn),點(diǎn)G在橢圓C上,且四邊形平行四邊形(其中O為坐標(biāo)原點(diǎn)),求

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】雙曲線的實(shí)軸長(zhǎng)為2,焦距為.根據(jù)題意和雙曲線的定義知,所以,,所以,所以.所以.故選:C【點(diǎn)睛】本題主要考查了焦點(diǎn)三角形以及橢圓的定義運(yùn)用,屬于基礎(chǔ)題型.2、D【解析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數(shù)量積計(jì)算作答.【詳解】四面體所有棱長(zhǎng)均為2,則向量不共面,兩兩夾角都為,則,因點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則,,,所以.故選:D3、C【解析】根據(jù)遞推關(guān)系式計(jì)算即可求出結(jié)果.【詳解】因?yàn)椋?,,則,,,故選:C.4、C【解析】設(shè)直角三角形的兩條直角邊邊長(zhǎng)分別為,則,根據(jù)基本不等式求出的最大值后,可得三角形周長(zhǎng)的最大值.【詳解】設(shè)直角三角形的兩條直角邊邊長(zhǎng)分別為,則.因?yàn)?,所以,所以,?dāng)且僅當(dāng)時(shí),等號(hào)成立.故這個(gè)直角三角形周長(zhǎng)的最大值為故選:C5、A【解析】根據(jù)函數(shù)是偶函數(shù)可得,可求出,求出函數(shù)在處的導(dǎo)數(shù)值即為切線斜率,即可求出切線方程.【詳解】函數(shù)為偶函數(shù),,即,解得,,則,,且,切線方程為,整理得.故選:A.【點(diǎn)睛】本題考查函數(shù)奇偶性的應(yīng)用,考查利用導(dǎo)數(shù)求切線方程,屬于基礎(chǔ)題.6、A【解析】根據(jù)題意可知,當(dāng)時(shí),根據(jù)橢圓離心率公式,即可求出結(jié)果;當(dāng)時(shí),根據(jù)雙曲線離心率公式,即可求出結(jié)果.【詳解】因?yàn)槭莾蓚€(gè)數(shù)1,9的等比中項(xiàng),所以,所以,當(dāng)時(shí),圓錐曲線,其離心率為;當(dāng)時(shí),圓錐曲線,其離心率為;綜上,圓錐曲線的離心率為或.故選:A.7、D【解析】由分層抽樣各層成比例計(jì)算即可【詳解】設(shè)高二年級(jí)學(xué)生人數(shù)為,則,解得故選:D8、D【解析】求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可,結(jié)合函數(shù)的單調(diào)性求出的最大值即可【詳解】函數(shù)的導(dǎo)數(shù)令可得,可得上單調(diào)遞增,在單調(diào)遞減,函數(shù)在上的最大值是故選D【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,是一道中檔題9、C【解析】利用已知即可求得,再利用已知可得:,問(wèn)題得解【詳解】解:根據(jù)題意,等和數(shù)列{an}中,,公和為5,則,即可得,又由an﹣1+an=5,則,則3;故選C【點(diǎn)睛】本題主要考查了新概念知識(shí),考查理解能力及轉(zhuǎn)化能力,還考查了數(shù)列的周期性,屬于中檔題10、C【解析】利用橢圓的定義直接求解【詳解】由題意得,得,因?yàn)椋?,所以,故選:C11、C【解析】根據(jù)基本不等式即可求出【詳解】因?yàn)椋?dāng)且僅當(dāng)時(shí)取等號(hào),所以函數(shù)的值域?yàn)楣蔬x:C12、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項(xiàng).【詳解】,,,,,……,以此類推,,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】先求出的坐標(biāo),進(jìn)而根據(jù)空間向量平行的坐標(biāo)運(yùn)算求得答案.【詳解】由題意,,因?yàn)?,所以存在?shí)數(shù)使得.故答案為:2.14、【解析】建立平面直角坐標(biāo)系,解得圖中N、Q的橫坐標(biāo),列方程組即可求得橢圓的a、c,進(jìn)而求得橢圓的離心率.【詳解】以A為原點(diǎn)建立平面直角坐標(biāo)系,則,,直線PR的方程為設(shè),由到直線PR的距離為1,得,解之得或(舍)則,又設(shè)直線PN方程為由到直線PN的距離為1,得,整理得則,又,故則直線PN的方程為,故,由,解得,故橢圓的離心率故答案為:【點(diǎn)睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問(wèn)題直觀化、生動(dòng)化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問(wèn)題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問(wèn)題便迎刃而解,且解法簡(jiǎn)捷。15、【解析】由空間直角坐標(biāo)系中點(diǎn)到軸的距離為計(jì)算可得【詳解】解:空間直角坐標(biāo)系中,點(diǎn)到軸的距離為故答案為:16、【解析】當(dāng)時(shí),曲線表示的圖形為以為圓心,以為半徑的圓在第一象限的部分,所以面積為,根據(jù)對(duì)稱性,可知由曲線圍成的圖形的面積為考點(diǎn):本小題主要考查曲線表示的平面圖形的面積的求法,考查學(xué)生分類討論思想的運(yùn)用和運(yùn)算求解能力.點(diǎn)評(píng):解決此題的關(guān)鍵是看出所求圖形在四個(gè)象限內(nèi)是相同的,然后求出在一個(gè)象限內(nèi)的圖形的面積即可解決問(wèn)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)由題意得出,然后與原式結(jié)合,兩式相減并化簡(jiǎn)求出,最后根據(jù)等差數(shù)列的定義求得答案;(2)結(jié)合(1),分別討論,和三種情況,分別求出,進(jìn)而求出.【小問(wèn)1詳解】因?yàn)?,所以,兩式相減得,所以又,所以數(shù)列是首項(xiàng)為,公差為2的等差數(shù)列,所以.【小問(wèn)2詳解】由得,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,所以.18、(1)證明見解析;(2).【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,求出點(diǎn)的坐標(biāo),計(jì)算得出,即可證得結(jié)論成立;或利用反證法;(2)利用空間向量法即求.【小問(wèn)1詳解】方法一:如圖以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、、設(shè),因?yàn)椋?,因?yàn)椋?,得,即點(diǎn),因?yàn)?,,所以,故與不垂直方法二:假設(shè)與垂直,又直線平面平面,所以.而與相交,所以平面又平面,從而又已知是正方形,所以與不垂直,這產(chǎn)生矛盾,所以假設(shè)不成立,即與不垂直得證.【小問(wèn)2詳解】設(shè)平面的法向量為,又,因?yàn)?,所以,令,?設(shè)平面的法向量為,因?yàn)?,所以,令,?因?yàn)?顯然二面角為鈍二面角,所以二面角的余弦值是.19、(1);(2)或.【解析】(1)利用圓心到直線的距離公式求圓的半徑,從而求解圓的方程;(2)根據(jù)相交弦長(zhǎng)公式,求出圓心到直線的距離,設(shè)出直線方程,再根據(jù)點(diǎn)到直線的距離公式確定直線方程【詳解】(1)由題意知到直線的距離為圓A半徑r,所以,所以圓A的方程為(2)設(shè)的中點(diǎn)為Q,則由垂徑定理可知,且,在中由勾股定理易知,設(shè)動(dòng)直線l方程為:或,顯然符合題意由到直線l距離為1知得所以或?yàn)樗笾本€方程【點(diǎn)睛】本題考查圓的標(biāo)準(zhǔn)方程及直線與圓的相交弦長(zhǎng)問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題20、(1)證明見解析(2)【解析】(1)由勾股定理以及等腰三角形的性質(zhì)得出,,再由線面垂直的判定證明即可;(2)以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,由向量法得出面面角.【小問(wèn)1詳解】設(shè),則,,平面平面,連接,,,,,即又,平面ABC【小問(wèn)2詳解】,以點(diǎn)為坐標(biāo)原點(diǎn),建立如下圖所示的空間直角坐標(biāo)系設(shè)平面的法向量為,平面的法向量為,令,則同理可得,又二面角為鈍角,故二面角的余弦值為.21、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,用列舉法寫出基本事件總數(shù),再利用古典概型的概率計(jì)算公式即可求解.【小問(wèn)1詳解】根據(jù)莖葉圖可知1班中位數(shù)為86,則,又∵,且故【小問(wèn)2詳解】由(1)可知,甲班86分以上有2人,乙班86以上有2人設(shè)甲班86分以上2人為,,乙班86分以上2人為,,從中任取兩名同學(xué)共有,,,,,共有6組基本事件,且每組出現(xiàn)都是等可能的記:“從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,兩人都來(lái)自甲班”為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論