寧夏寧川市興慶區(qū)長慶高級中學2026屆數(shù)學高三上期末教學質(zhì)量檢測試題含解析_第1頁
寧夏寧川市興慶區(qū)長慶高級中學2026屆數(shù)學高三上期末教學質(zhì)量檢測試題含解析_第2頁
寧夏寧川市興慶區(qū)長慶高級中學2026屆數(shù)學高三上期末教學質(zhì)量檢測試題含解析_第3頁
寧夏寧川市興慶區(qū)長慶高級中學2026屆數(shù)學高三上期末教學質(zhì)量檢測試題含解析_第4頁
寧夏寧川市興慶區(qū)長慶高級中學2026屆數(shù)學高三上期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

寧夏寧川市興慶區(qū)長慶高級中學2026屆數(shù)學高三上期末教學質(zhì)量檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.2.函數(shù)的大致圖象是()A. B.C. D.3.復數(shù)的虛部為()A. B. C.2 D.4.某校8位學生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)5.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.6.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.7.德國數(shù)學家萊布尼茲(1646年-1716年)于1674年得到了第一個關于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學家?天文學家明安圖(1692年-1765年)為提高我國的數(shù)學研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結果是()A. B.C. D.8.已知集合,,則=()A. B. C. D.9.如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結論錯誤的是()A.2019年12月份,全國居民消費價格環(huán)比持平B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格10.設過定點的直線與橢圓:交于不同的兩點,,若原點在以為直徑的圓的外部,則直線的斜率的取值范圍為()A. B.C. D.11.設等差數(shù)列的前n項和為,且,,則()A.9 B.12 C. D.12.已知命題,且是的必要不充分條件,則實數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,若的展開式中的系數(shù)比x的系數(shù)大30,則______.14.已知等比數(shù)列的各項均為正數(shù),,則的值為________.15.已知點是拋物線的焦點,,是該拋物線上的兩點,若,則線段中點的縱坐標為__________.16.設,若函數(shù)有大于零的極值點,則實數(shù)的取值范圍是_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.18.(12分)已知函數(shù)是減函數(shù).(1)試確定a的值;(2)已知數(shù)列,求證:.19.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設,,求證:.20.(12分)已知函數(shù).(1)若是函數(shù)的極值點,求的單調(diào)區(qū)間;(2)當時,證明:21.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.22.(10分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

將點A坐標代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標準方程和離心率的概念,屬于基礎題.2、A【解析】

用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數(shù)圖象,屬基礎題.3、D【解析】

根據(jù)復數(shù)的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復數(shù)的除法運算和復數(shù)的概念.4、A【解析】

通過方差公式分析可知方差沒有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績相比,成績和平均數(shù)都增加了50,所以沒有改變,根據(jù)方差公式可知方差不變.故選:A【點睛】本題主要考查樣本的數(shù)字特征,意在考查學生對這些知識的理解掌握水平.5、B【解析】

,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算、數(shù)乘運算,考查學生的運算能力,是一道中檔題.6、B【解析】

根據(jù)所給不等式組,畫出不等式表示的可行域,將目標函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標函數(shù)化為,則將平移,平移后結合圖像可知,當經(jīng)過原點時截距最小,;當經(jīng)過時,截距最大值,,所以線性目標函數(shù)的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應用,線性目標函數(shù)取值范圍的求法,屬于基礎題.7、B【解析】

執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結果,故選:B.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,得到程序框圖的計算功能是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.8、C【解析】

計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學生的計算能力.9、D【解析】

先對圖表數(shù)據(jù)的分析處理,再結簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環(huán)比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數(shù)據(jù)的分析處理能力及進行簡單的合情推理,屬于中檔題.10、D【解析】

設直線:,,,由原點在以為直徑的圓的外部,可得,聯(lián)立直線與橢圓方程,結合韋達定理,即可求得答案.【詳解】顯然直線不滿足條件,故可設直線:,,,由,得,,解得或,,,,,,解得,直線的斜率的取值范圍為.故選:D.【點睛】本題解題關鍵是掌握橢圓的基礎知識和圓錐曲線與直線交點問題時,通常用直線和圓錐曲線聯(lián)立方程組,通過韋達定理建立起目標的關系式,考查了分析能力和計算能力,屬于中檔題.11、A【解析】

由,可得以及,而,代入即可得到答案.【詳解】設公差為d,則解得,所以.故選:A.【點睛】本題考查等差數(shù)列基本量的計算,考查學生運算求解能力,是一道基礎題.12、D【解析】

求出命題不等式的解為,是的必要不充分條件,得是的子集,建立不等式求解.【詳解】解:命題,即:,是的必要不充分條件,,,解得.實數(shù)的取值范圍為.故選:.【點睛】本題考查根據(jù)充分、必要條件求參數(shù)范圍,其思路方法:(1)解決此類問題一般是把充分條件、必要條件或充要條件轉化為集合之間的關系,然后根據(jù)集合之間關系列出關于參數(shù)的不等式(組)求解.(2)求解參數(shù)的取值范圍時,一定要注意區(qū)間端點值的檢驗.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

利用二項展開式的通項公式,二項式系數(shù)的性質(zhì),求得的值.【詳解】展開式通項為:且的展開式中的系數(shù)比的系數(shù)大,即:解得:(舍去)或本題正確結果:【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎題.14、【解析】

運用等比數(shù)列的通項公式,即可解得.【詳解】解:,,,,,,,,,,,.故答案為:.【點睛】本題考查等比數(shù)列的通項公式及應用,考查計算能力,屬于基礎題.15、2【解析】

運用拋物線的定義將拋物線上的點到焦點距離等于到準線距離,然后求解結果.【詳解】拋物線的標準方程為:,則拋物線的準線方程為,設,,則,所以,則線段中點的縱坐標為.故答案為:【點睛】本題考查了拋物線的定義,由拋物線定義將點到焦點距離轉化為點到準線距離,需要熟練掌握定義,并能靈活運用,本題較為基礎.16、【解析】

先求導數(shù),求解導數(shù)為零的根,結合根的分布求解.【詳解】因為,所以,令得,因為函數(shù)有大于0的極值點,所以,即.【點睛】本題主要考查利用導數(shù)研究函數(shù)的極值點問題,極值點為導數(shù)的變號零點,側重考查轉化化歸思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)由等腰梯形的性質(zhì)可證得,由射影可得平面,進而求證;(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,分別求得平面與平面的法向量,再利用數(shù)量積求解即可.【詳解】(1)在等腰梯形中,點E在線段上,且,點E為上靠近C點的四等分點,,,,,點P在底面上的射影為的中點G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設平面的法向量為,則,即,令,則,,,設平面的法向量為,則,即,令,則,,,設平面與平面的夾角為θ,則二面角的余弦值為.【點睛】本題考查線面垂直的證明,考查空間向量法求二面角,考查運算能力與空間想象能力.18、(Ⅰ)(Ⅱ)見證明【解析】

(Ⅰ)求導得,由是減函數(shù)得,對任意的,都有恒成立,構造函數(shù),通過求導判斷它的單調(diào)性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數(shù),且可得,當時,,則,即,兩邊同除以得,,即,從而,兩邊取對數(shù),然后再證明恒成立即可,構造函數(shù),,通過求導證明即可.【詳解】解:(Ⅰ)的定義域為,.由是減函數(shù)得,對任意的,都有恒成立.設.∵,由知,∴當時,;當時,,∴在上單調(diào)遞增,在上單調(diào)遞減,∴在時取得最大值.又∵,∴對任意的,恒成立,即的最大值為.∴,解得.(Ⅱ)由是減函數(shù),且可得,當時,,∴,即.兩邊同除以得,,即.從而,所以①.下面證;記,.∴,∵在上單調(diào)遞增,∴在上單調(diào)遞減,而,∴當時,恒成立,∴在上單調(diào)遞減,即時,,∴當時,.∵,∴當時,,即②.綜上①②可得,.【點睛】本題考查了導數(shù)與函數(shù)的單調(diào)性的關系,考查了函數(shù)的最值,考查了構造函數(shù)的能力,考查了邏輯推理能力與計算求解能力,屬于難題.,19、(1).(2)見解析【解析】

(1)由絕對值三解不等式可得,所以當時,,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當時,,解得.(2)∵,∴,∴,當且僅當,即,時,等號成立.∴.【點睛】本題主要考查絕對值三角不等式及基本不等式的簡單應用,屬于中檔題.20、(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見解析【解析】

(1)根據(jù)函數(shù)解析式,先求得導函數(shù),由是函數(shù)的極值點可求得參數(shù).求得函數(shù)定義域,并根據(jù)導函數(shù)的符號即可判斷單調(diào)區(qū)間.(2)當時,.代入函數(shù)解析式放縮為,代入證明的不等式可化為,構造函數(shù),并求得,由函數(shù)單調(diào)性及零點存在定理可知存在唯一的,使得成立,因而求得函數(shù)的最小值,由對數(shù)式變形化簡可證明,即成立,原不等式得證.【詳解】(1)函數(shù)可求得,則解得所以,定義域為,在單調(diào)遞增,而,∴當時,,單調(diào)遞減,當時,,單調(diào)遞增,此時是函數(shù)的極小值點,的遞減區(qū)間為,遞增區(qū)間為(2)證明:當時,,因此要證當時,,只需證明,即令,則,在是單調(diào)遞增,而,∴存在唯一的,使得,當,單調(diào)遞減,當,單調(diào)遞增,因此當時,函數(shù)取得最小值,,,故,從而,即,結論成立.【點睛】本題考查了由函數(shù)極值求參數(shù),并根據(jù)導數(shù)判斷函數(shù)的單調(diào)區(qū)間,利用導數(shù)證明不等式恒成立,構造函數(shù)法的綜

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論