福建省永春一中、培元、季延、石光中學四校2026屆高二上數(shù)學期末調(diào)研模擬試題含解析_第1頁
福建省永春一中、培元、季延、石光中學四校2026屆高二上數(shù)學期末調(diào)研模擬試題含解析_第2頁
福建省永春一中、培元、季延、石光中學四校2026屆高二上數(shù)學期末調(diào)研模擬試題含解析_第3頁
福建省永春一中、培元、季延、石光中學四校2026屆高二上數(shù)學期末調(diào)研模擬試題含解析_第4頁
福建省永春一中、培元、季延、石光中學四校2026屆高二上數(shù)學期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

福建省永春一中、培元、季延、石光中學四校2026屆高二上數(shù)學期末調(diào)研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是橢圓的左,右焦點,是的左頂點,點在過且斜率為的直線上,為等腰三角形,,則的離心率為A. B.C. D.2.如圖所示,一圓形紙片的圓心為O,F(xiàn)是圓內(nèi)一定點,M是圓周上一動點,把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設CD與OM交于點P,則點P的軌跡是()A.圓 B.雙曲線C.拋物線 D.橢圓3.一條光線從點射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或4.拋物線的焦點坐標為()A. B.C. D.5.已知正方形的四個頂點都在橢圓上,若的焦點F在正方形的外面,則的離心率的取值范圍是()A. B.C. D.6.已知橢圓的右焦點為F,短軸的一個端點為P,直線與橢圓相交于A、B兩點.若,點P到直線l的距離不小于,則橢圓C離心率的取值范圍為()A. B.C. D.7.直線的傾斜角,則其斜率的取值范圍為()A. B.C. D.8.已知,則“”是“”的()A.充分不必要條件 B.充要條件C.必要不充分條件 D.既不充分也不必要條件9.在中,角A,B,C所對的邊分別為a,b,c,已知,則的面積為()A. B.C. D.10.2021年小林大學畢業(yè)后,9月1日開始工作,他決定給自己開一張儲蓄銀行卡,每月的10號存錢至該銀行卡(假設當天存錢次日到賬).2021年9月10日他給卡上存入1元,以后每月存的錢數(shù)比上個月多一倍,則他這張銀行卡賬上存錢總額(不含銀行利息)首次達到1萬元的時間為()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日11.如圖,橢圓的右焦點為,過與軸垂直的直線交橢圓于第一象限的點,點關于坐標原點的對稱點為,且,,則橢圓方程為()A. B.C. D.12.已知直線在兩個坐標軸上的截距之和為7,則實數(shù)m的值為()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線上一點到其準線的距離為4,則拋物線的標準方程為___________.14.若直線與直線平行,則________.15.設雙曲線C:(a>0,b>0)的一條漸近線為y=x,則C的離心率為_________16.如圖,四邊形為直角梯形,且,為正方形,且平面平面,,,,則______,直線與平面所成角的正弦值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:的焦點是圓與軸的一個交點.(1)求拋物線的方程;(2)若過點的直線與拋物線交于不同的兩點A、B,О為坐標原點,證明:.18.(12分)已知函數(shù)f(x)+alnx,實數(shù)a>0(1)當a=2時,求函數(shù)f(x)在x=1處的切線方程;(2)討論函數(shù)f(x)在區(qū)間(0,10)上的單調(diào)性和極值情況;(3)若存在x∈(0,+∞),使得關于x的不等式f(x)<2+a2x成立,求實數(shù)a的取值范圍19.(12分)撫州市為了了解學生的體能情況,從全市所有高一學生中按80:1的比例隨機抽取200人進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,分為組畫出頻率分布直方圖如圖所示,現(xiàn)一,二兩組數(shù)據(jù)丟失,但知道第二組的頻率是第一組的3倍(1)若次數(shù)在以上含次為優(yōu)秀,試估計全市高一學生的優(yōu)秀率是多少?全市優(yōu)秀學生的人數(shù)約為多少?(2)求第一組、第二小組的頻率是多少?并補齊頻率分布直方圖;(3)估計該全市高一學生跳繩次數(shù)的中位數(shù)和平均數(shù)?20.(12分)已知集合,,.(1)求;(2)若“”是“”的必要不充分條件,求實數(shù)a的取值范圍.21.(12分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標原點),當直線的傾斜角為銳角時,求的取值范圍22.(10分)雙曲線,離心率,虛軸長為2(1)求雙曲線的標準方程;(2)經(jīng)過點的直線與雙曲線相交于兩點,且為的中點,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關系,即得離心率.詳解:因為等腰三角形,,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于的方程或不等式,再根據(jù)的關系消掉得到的關系式,而建立關于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.2、D【解析】根據(jù)題意知,所以,故點P的軌跡是橢圓.【詳解】由題意知,關于CD對稱,所以,故,可知點P的軌跡是橢圓.【點睛】本題主要考查了橢圓的定義,屬于中檔題.3、C【解析】點關于軸的對稱點為,由反射光線的性質(zhì),可設反射光線所在直線的方程為:,再利用直線與圓相切,可知圓心到直線的距離等于半徑,由此即可求出結果【詳解】點關于軸的對稱點為,設反射光線所在直線的方程為:,化為因為反射光線與圓相切,所以圓心到直線的距離,可得,所以或故選:C4、C【解析】先把拋物線方程化為標準方程,求出即可求解【詳解】由,有,可得,拋物線的焦點坐標為故選:C5、C【解析】如圖由題可得,進而可得,即求.【詳解】如圖根據(jù)對稱性,點D在直線y=x上,可設,則,∴,可得,,即,又解得.故選:C.6、D【解析】設橢圓的左焦點為,由題可得,由點P到直線l的距離不小于可得,進而可求的范圍,即可得出離心率范圍.【詳解】設橢圓的左焦點為,P為短軸的上端點,連接,如圖所示:由橢圓的對稱性可知,A,B關于原點對稱,則,又,∴四邊形為平行四邊形,∴,又,解得:,點P到直線l距離:,解得:,即,∴,∴.故選:D.【點睛】關鍵點睛:本題考查橢圓離心率的求解,解題的關鍵是由橢圓定義得出,再根據(jù)已知條件得出.7、B【解析】根據(jù)傾斜角和斜率的關系,確定正確選項.【詳解】直線的傾斜角為,則斜率為,在上為增函數(shù).由于直線的傾斜角,所以其斜率的取值范圍為,即.故選:B【點睛】本小題主要考查傾斜角和斜率的關系,屬于基礎題.8、B【解析】求得中的取值范圍,由此確定充分、必要條件.【詳解】,,所以“”是“”的充要條件.故選:B9、A【解析】由余弦定理計算求得角,根據(jù)三角形面積公式計算即可得出結果.【詳解】由余弦定理得,,∴,∴,故選:A10、C【解析】分析可得每月所存錢數(shù)依次成首項為1,公比為2的等比數(shù)列,其前n項和為,分析首次達到1萬元的值,即得解【詳解】依題意可知,小林從第一個月開始,每月所存錢數(shù)依次成首項為1,公比為2的等比數(shù)列,其前n項和為.因為為增函數(shù),且,所以第14個月的10號存完錢后,他這張銀行卡賬上存錢總額首次達到1萬元,即2022年10月11日他這張銀行卡賬上存錢總額首次達到1萬元.故選:C11、C【解析】連結,設,則,,由可求出,進而可求出,得出橢圓方程.【詳解】由題意設橢圓的方程:,設左焦點為,連結,由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設,則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點睛】關鍵點睛:本題考查了橢圓的標準方程求解及橢圓的簡單幾何性質(zhì),在求解橢圓標準方程時,關鍵是求解基本量,,.12、C【解析】求出直線方程在兩坐標軸上的截距,列出方程,求出實數(shù)m的值.【詳解】當時,,故不合題意,故,,令得:,令得:,故,解得:.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先由拋物線的方程求出準線的方程,然后根據(jù)點到準線的距離可求,進而可得拋物線的標準方程.【詳解】拋物線的準線方程為,點到其準線的距離為,由題意可得,解得,故拋物線的標準方程為.故答案為:.14、【解析】根據(jù)直線平行的充要條件即可求出【詳解】當時,顯然兩直線不平行,所以依題有,解得故答案為:15、【解析】根據(jù)已知可得,結合雙曲線中的關系,即可求解.【詳解】由雙曲線方程可得其焦點在軸上,因為其一條漸近線為,所以,.故答案為:【點睛】本題考查的是有關雙曲線性質(zhì),利用漸近線方程與離心率關系是解題的關鍵,要注意判斷焦點所在位置,屬于基礎題.16、①..②..【解析】以點為坐標原點,,,所在直線分別為軸,軸,軸建立空間直角坐標系,根據(jù)空間向量的線性運算求得向量的坐標,由此求得,由線面角的空間向量求解方法求得答案.【詳解】解:以點為坐標原點,,,所在直線分別為軸,軸,軸建立空間直角坐標系(如下圖所示)由題意可知,,,因為,,所以,故設平面的法向量為,則,令,得因為,所以直線與平面所成角的正弦值為故答案為:;.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)由圓與軸的交點分別為,可得拋物線的焦點為,從而即可求解;(2)設直線為,聯(lián)立拋物線方程,由韋達定理及,求出即可得證.【小問1詳解】解:由題意知,圓與軸的交點分別為,則拋物線的焦點為,所以,所以拋物線方程為;【小問2詳解】證明:設直線為,聯(lián)立方程,有,所以,所以,所以.18、(1)4x﹣y+2=0(2)答案見解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的導數(shù),可得切線的斜率和切點坐標,由直線的點斜式方程可得所求切線的方程;(2)求得f(x)的導數(shù),分a、0<a兩種情況討論求出答案即可;(3)由題意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成關于的函數(shù),結合其單調(diào)性和極值可得答案【小問1詳解】函數(shù)f(x)的定義域為(0,+∞),當a=2時,,導數(shù)為4,可得f(x)在x=1處的切線的斜率為4,又f(1)=6,所以f(x)在x=1處的切線的方程為y﹣6=4(x﹣1),即4x﹣y+2=0;【小問2詳解】f(x)的導數(shù)為f′(x)a2,x>0,令f′(x)=0,可得x(舍去),①當010,即a時,當0<x時,f′(x)<0,f(x)遞減;當x<10時,f′(x)>0,f(x)遞增所以f(x)在(0,)上遞減,在(,10)上遞增,f(x)在x處取得極小值,無極大值;②當10即0<a時,f′(x)<0,f(x)在(0,10)上遞減,無極值綜上可得,當a時,f(x)在(0,)單調(diào)遞減,在(,10)上單調(diào)遞增,f(x)在x時取得極小值,無極大值當0<a時,f(x)在區(qū)間(0,10)上遞減,無極值;【小問3詳解】存在x∈(0,+∞),使得不等式f(x)<2+a2x成立等價為存在x∈(0,+∞),使得不等式alnx﹣2<0成立令,x>0,g′(x),因為a>0,可得當0<x時,g′(x)<0,g(x)遞減;當x時,g′(x)>0,g(x)遞增,所以當x時,g(x)取得極小值,且為最小值,由題意可得,令,,令h′(x)=0,可得x=2,當x∈(0,2)時,h′(x)>0,h(x)遞增;當x∈(2,+∞)時,h′(x)<0,h(x)遞減所以當x=2時,h(x)取得極大值,且為最大值h(2)=0所以滿足的實數(shù)a的取值范圍是(0,2)∪(2,+∞)19、(1)8640;(2)第一組頻率為,第二組頻率為.頻率分布直方圖見解析;(3)中位數(shù)為,均值為121.9【解析】(1)求出優(yōu)秀的頻率,計算出抽取的人員中優(yōu)秀學生數(shù)后可得全體優(yōu)秀學生數(shù);(2)由頻率和為1求得第一組、第二組頻率,然后可補齊頻率分布直方圖;(3)在頻率分布直方圖中計算出頻率對應的值即為中位數(shù),用各組數(shù)據(jù)中點值乘以頻率后相加得均值【詳解】(1)由頻率分布直方圖,分數(shù)在120分以上的頻率為,因此優(yōu)秀學生有(人);(2)設第一組頻率為,則第二組頻率為,所以,,第一組頻率為,第二組頻率為頻率分布直方圖如下:(3)前3組數(shù)據(jù)的頻率和為,中位數(shù)在第四組,設中位數(shù)為,則,均值為20、(1).(2).【解析】分析:(1)先求出A,B集合的解集,A集合求定義,B集合解不等式即可,然后由交集定義即可得結論;(2)若“”是“”的必要不充分條件,說明且,然后根據(jù)集合關系求解.詳解:(1),.則(2),因為“”是“”的必要不充分條件,所以且.由,得,解得.經(jīng)檢驗,當時,成立,故實數(shù)的取值范圍是.點睛:考查定義域,解不等式,交集的定義以及必要不充分條件,正確求解集合,縷清集合間的基本關系是解題關鍵,屬于基礎題.21、(1)(2)【解析】(1)根據(jù)橢圓的長軸和離心率,可求得,進而得橢圓方程;(2)先判斷直線斜率為正,然后設出直線方程,和橢圓方程聯(lián)立,整理得根與系數(shù)的關系,利用直線方程求出點S、T的坐標,再根據(jù)確定的表達式,將根與系數(shù)的關系式代入化簡,求得結果.【小問1詳解】由題意可得:解得:,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論