版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
梅州市重點(diǎn)中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的導(dǎo)數(shù)為()A.B.CD.2.已知,若,則的取值范圍為()A. B.C. D.3.某學(xué)生2021年共參加10次數(shù)學(xué)競(jìng)賽模擬考試,成績(jī)分別記為,,,…,,為研究該生成績(jī)的起伏變化程度,選用一下哪個(gè)數(shù)字特征最為合適()A.,,,…,的平均值; B.,,,…,的標(biāo)準(zhǔn)差;C.,,,…,的中位數(shù); D.,,,…,的眾數(shù);4.已知兩圓相交于兩點(diǎn)和,兩圓的圓心都在直線上,則的值為A. B.2C.3 D.05.若且,則下列不等式中一定成立的是()A. B.C. D.6.已知x>0、y>0,且1,若恒成立,則實(shí)數(shù)m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)7.在正方體中,為棱的中點(diǎn),為棱的中點(diǎn),則直線與平面所成角的正弦值為()A. B.C. D.8.執(zhí)行如圖所示的程序框圖,若輸出的,則輸人的()A. B.或C. D.或9.設(shè)函數(shù),則()A.4 B.5C.6 D.710.如圖已知正方體,點(diǎn)是對(duì)角線上的一點(diǎn)且,,則()A.當(dāng)時(shí),平面 B.當(dāng)時(shí),平面C.當(dāng)為直角三角形時(shí), D.當(dāng)?shù)拿娣e最小時(shí),11.已知,則a,b,c的大小關(guān)系為()A. B.C. D.12.下列說(shuō)法正確的有()個(gè).①向量,,,不一定成立;②圓與圓外切③若,則數(shù)是數(shù),的等比中項(xiàng).A.1 B.2C.3 D.0二、填空題:本題共4小題,每小題5分,共20分。13.將連續(xù)的正整數(shù)填入n行n列的方陣中,使得每行、每列、每條對(duì)角線上的數(shù)之和相等,可得到n階幻方.記n階幻方每條對(duì)角線上的數(shù)之和為,如圖:,那么的值為___________.14.如果點(diǎn)在運(yùn)動(dòng)過(guò)程中,總滿足關(guān)系式,記滿足此條件的點(diǎn)M的軌跡為C,直線與C交于D,E,已知,則周長(zhǎng)的最大值為______15.命題“任意,”為真命題,則實(shí)數(shù)a的取值范圍是______.16.已知等比數(shù)列的前項(xiàng)和為,若,,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓C的圓心在直線上,且過(guò)點(diǎn),(1)求圓C的方程;(2)若圓C與直線交于A,B兩點(diǎn),______,求m的值從下列三個(gè)條件中任選一個(gè)補(bǔ)充在上面問(wèn)題中并作答:條件①:;條件②:圓上一點(diǎn)P到直線的最大距離為;條件③:18.(12分)在等差數(shù)列中,,.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)如圖,在三棱柱中,面ABC,,,D為BC的中點(diǎn)(1)求證:平面;(2)若F為中點(diǎn),求與平面所成角的正弦值20.(12分)已知函數(shù)(1)當(dāng)時(shí),求的極值;(2)討論的單調(diào)性21.(12分)已知點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為Q,以Q為圓心的圓與直線相交于A,B兩點(diǎn),且(1)求圓Q的方程;(2)過(guò)坐標(biāo)原點(diǎn)O任作一直線交圓Q于C,D兩點(diǎn),求證:為定值22.(10分)如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的封閉圖形.(1)設(shè),,求這個(gè)幾何體的表面積;(2)設(shè)G是弧DF的中點(diǎn),設(shè)P是弧CE上的一點(diǎn),且.求異面直線AG與BP所成角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由導(dǎo)數(shù)運(yùn)算法則可求出.【詳解】,.故選:B.2、C【解析】根據(jù)題意,由為原點(diǎn)到直線上點(diǎn)的距離的平方,再根據(jù)點(diǎn)到直線垂線段最短,即可求得范圍.【詳解】由,,視為原點(diǎn)到直線上點(diǎn)的距離的平方,根據(jù)點(diǎn)到直線垂線段最短,可得,所有的取值范圍為,故選:C.3、B【解析】根據(jù)平均數(shù)、標(biāo)準(zhǔn)差、中位數(shù)及眾數(shù)的概念即得.【詳解】根據(jù)平均數(shù)、中位數(shù)、眾數(shù)的概念可知,平均數(shù)、中位數(shù)、眾數(shù)描述數(shù)據(jù)的集中趨勢(shì),標(biāo)準(zhǔn)差描述數(shù)據(jù)的波動(dòng)大小估計(jì)數(shù)據(jù)的穩(wěn)定程度.故選:B.4、C【解析】根據(jù)條件知:兩圓的圓心的所在的直線與兩圓的交點(diǎn)所在的直線垂直,以及兩圓的交點(diǎn)的中點(diǎn)在兩圓的圓心的所在的直線上,由此得到方程,得解.【詳解】由已知兩圓的交點(diǎn)與兩圓的圓心的所在的直線垂直,,所以,又因?yàn)閮蓤A的交點(diǎn)的中點(diǎn)在兩圓的圓心所在的直線上,所以,解得:,所以,故選.【點(diǎn)睛】此題主要考查圓與圓的位置關(guān)系,解答此題的關(guān)鍵是需知兩圓的圓心所在的直線與兩圓的交點(diǎn)所在的直線垂直,并且兩圓的交點(diǎn)的中點(diǎn)在兩圓的圓心所在的直線上,此題屬于基礎(chǔ)題.5、D【解析】根據(jù)不等式的性質(zhì)即可判斷.【詳解】對(duì)于A,若,則不等式不成立;對(duì)于B,若,則不等式不成立;對(duì)于C,若均為負(fù)值,則不等式不成立;對(duì)于D,不等號(hào)的兩邊同乘負(fù)值,不等號(hào)的方向改變,故正確;故選:D【點(diǎn)睛】本題主要考查不等式的性質(zhì),需熟練掌握性質(zhì),屬于基礎(chǔ)題.6、B【解析】應(yīng)用基本不等式“1”的代換求的最小值,注意等號(hào)成立條件,再根據(jù)題設(shè)不等式恒成立有,解一元二次不等式求解集即可.【詳解】由題設(shè),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴要使恒成立,只需,故,∴.故選:B.7、D【解析】建立空間直角坐標(biāo)系,計(jì)算平面的法向量,利用線面角的向量公式即得解【詳解】不妨設(shè)正方體的棱長(zhǎng)為2,連接,以為坐標(biāo)原點(diǎn)如圖建立空間直角坐標(biāo)系,則,,,,,,由于平面,平面,故又正方形,故平面故平面,所以為平面的一個(gè)法向量,故直線與平面所成角正弦值為.故選:D8、A【解析】根據(jù)題意可知該程序框圖顯示的算法函數(shù)為,分和兩種情況討論即可得解.【詳解】解:該程序框圖顯示得算法函數(shù)為,由,當(dāng)時(shí),,方程無(wú)解;當(dāng)時(shí),,解得,綜上,若輸出的,則輸入的.故選:A.9、D【解析】求出函數(shù)的導(dǎo)數(shù),將x=1代入即可求得答案.【詳解】,故,故選:D.10、D【解析】建立空間直角坐標(biāo)系,利用空間向量法一一計(jì)算可得;【詳解】解:由題可知,如圖令正方體的棱長(zhǎng)為1,建立空間直角坐標(biāo)系,則,,,,,,,所以,因?yàn)椋?,所以,,,,設(shè)平面的法向量為,則,令,則,,所以對(duì)于A:若平面,則,則,解得,故A錯(cuò)誤;對(duì)于B:若平面,則,即,解得,故B錯(cuò)誤;當(dāng)為直角三角形時(shí),有,即,解得或(舍去),故C錯(cuò)誤;設(shè)到的距離為,則,當(dāng)?shù)拿娣e最小時(shí),,故正確故選:11、A【解析】根據(jù)給定條件構(gòu)造函數(shù),再探討其單調(diào)性并借助單調(diào)性判斷作答.【詳解】令函數(shù),求導(dǎo)得,當(dāng)時(shí),,于是得在上單調(diào)遞減,而,則,即,所以,故選:A12、A【解析】由向量數(shù)量積為實(shí)數(shù),以及向量共線定理,即可判斷①;求出圓心距,即可判斷兩圓位置關(guān)系,從而判斷②;取,即可判斷③【詳解】對(duì)于①,與共線,與共線,故不一定成立,故①正確;對(duì)于②,圓的圓心為,半徑為,圓可變形為,故其圓心為,半徑為,則圓心距,由,所以兩圓相交,故②錯(cuò)誤;對(duì)于③,若,取,則數(shù)不是數(shù)的等比中項(xiàng),故③錯(cuò)誤故選:A二、填空題:本題共4小題,每小題5分,共20分。13、34【解析】根據(jù)每行數(shù)字之和相等,四行數(shù)字之和剛好等于1到16之和可得.【詳解】4階幻方中,4行數(shù)字之和,得.故答案為:3414、8【解析】根據(jù)橢圓定義判斷出軌跡,分析條件結(jié)合橢圓定義可知當(dāng)直線x=m過(guò)右焦點(diǎn)時(shí),三角形ADE周長(zhǎng)最大.【詳解】,到定點(diǎn),的距離和等于常數(shù),點(diǎn)軌跡C為橢圓,且故其方程為,則為左焦點(diǎn),因?yàn)橹本€與C交于D,E,則,不妨設(shè)D在軸上方,E在軸下方,設(shè)橢圓右焦點(diǎn)為A',連接DA',EA',因?yàn)镈A'+EA'≥DE,所以DA+EA+DA'+EA'≥DA+EA+DE,即4a≥DA+EA+DE,所以△ADE的周長(zhǎng),當(dāng)時(shí)取得最大值8,故答案為:815、【解析】分離常數(shù),將問(wèn)題轉(zhuǎn)化求函數(shù)最值問(wèn)題.【詳解】任意,恒成立恒成立,故只需,記,,易知,所以.故答案為:16、【解析】設(shè)等比數(shù)列的公比為,根據(jù)已知條件求出的值,由此可得出的值.【詳解】設(shè)等比數(shù)列的公比為,則,整理可得,,解得,因此,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)根據(jù)圓心在過(guò)點(diǎn),的線段的中垂線上,同時(shí)圓心圓心在直線上,可求出圓心的坐標(biāo),進(jìn)而求得半徑,最后求出其標(biāo)準(zhǔn)方程;(2)選①利用用垂徑定理可求得答案,選②根據(jù)圓上一點(diǎn)P到直線的最大距離為可求得答案,選③先利用向量的數(shù)量積可求得,解法就和選①時(shí)相同.【小問(wèn)1詳解】由題意可知,圓心在點(diǎn)的中垂線上,該中垂線的方程為,于是,由,解得圓心,圓C的半徑所以,圓C的方程為;【小問(wèn)2詳解】①,因?yàn)椋?,所以圓心C到直線l的距離,則,解得,②,圓上一點(diǎn)P到直線的最大距離為,可知圓心C到直線l的距離則,解得,③,因?yàn)椋?,得,又,所以圓心C到直線l的距離,則,解得18、(1)(2)【解析】(1)設(shè)的公差為,根據(jù)題意列出關(guān)于和的方程組,求解方程組,再根據(jù)等差數(shù)列的通項(xiàng)公式,即可求出結(jié)果.(2)對(duì)數(shù)列中項(xiàng)的正負(fù)情況進(jìn)行討論,再結(jié)合等差數(shù)列的前項(xiàng)和公式,即可求出結(jié)果.【小問(wèn)1詳解】解:設(shè)的公差為d,因?yàn)?,,所以解得?【小問(wèn)2詳解】解:設(shè)的前項(xiàng)和為,則.當(dāng)時(shí),,所以所以;當(dāng)時(shí),.所以.19、(1)證明見解析(2)【解析】(1)連接交于點(diǎn)O,連接OD,通過(guò)三角形中位線證明即可;(2)建立空間直角坐標(biāo)系,利用向量法求解即可.【小問(wèn)1詳解】解法1:如圖,連接交于點(diǎn)O,連接OD,因?yàn)樵谌庵校倪呅问瞧叫兴倪呅?,所以O(shè)是的中點(diǎn),因?yàn)镈為BC的中點(diǎn),所以在中,,因?yàn)槠矫?,平面,所以平面平面解?:因?yàn)樵谌庵?,面ABC,,所以BA,BC,兩兩垂直,故以B點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的空間直角坐標(biāo)系,因?yàn)椋訠(0,0,0),A(2,0,0),D(0,1,0),,,所以,,,設(shè)平面的一個(gè)法向量為,則,即,令,則,∴,平面,所以平面;【小問(wèn)2詳解】設(shè)與平面所成角為,由(1)知平面法向量為,F(xiàn)為中點(diǎn),∴,,∴即與平面所成角正弦值為.20、(1)極小值為,無(wú)極大值(2)答案見解析【解析】(1)求出導(dǎo)函數(shù),由得增區(qū)間,得減區(qū)間,從而得極值;(2)求出導(dǎo)函數(shù),分類討論確定和解得單調(diào)性小問(wèn)1詳解】當(dāng)時(shí),,(x>0)則令,得,得,得,所以的單調(diào)遞減區(qū)間為;單調(diào)遞增區(qū)間為.所以的極小值為f(2)=,無(wú)極大值.【小問(wèn)2詳解】令則當(dāng)時(shí),在上單調(diào)遞減.當(dāng)時(shí),,得,,得;,得在上單調(diào)遞減,在上單調(diào)遞增,綜上所述,當(dāng)時(shí),在上單調(diào)遞減.當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.21、(1)(2)證明見解析【解析】(1)先求出點(diǎn)坐標(biāo),然后根據(jù)圓心到直線的距離公式及的值求出半徑即可求得圓的方程.(2)設(shè)出直線方程,聯(lián)立圓和直線方程利用韋達(dá)定理來(lái)求解.【小問(wèn)1詳解】解:點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)Q為由Q到直線的距離,所以所以圓的方程為【小問(wèn)2詳解】當(dāng)直線CD斜率不存在時(shí),,所以.當(dāng)直線CD斜率存在時(shí),設(shè)為k,則直線為,記,聯(lián)立,得所以,綜上,為定值522、(1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 車間崗前安全培訓(xùn)內(nèi)容課件
- 車間安全操作規(guī)程安全教育培訓(xùn)課
- 車間安全培訓(xùn)通訊課件
- 車間安全培訓(xùn)心得課件
- 市場(chǎng)線路老化申請(qǐng)報(bào)告(3篇)
- 車間安全員消防培訓(xùn)內(nèi)容課件
- 2026年海洋生態(tài)監(jiān)測(cè)項(xiàng)目評(píng)估報(bào)告
- 2026年智能KDS廚房顯示屏項(xiàng)目公司成立分析報(bào)告
- 2026年新能源汽車高壓平臺(tái)項(xiàng)目投資計(jì)劃書
- 2026年智能超級(jí)拳靶項(xiàng)目公司成立分析報(bào)告
- 2025年融資融券業(yè)務(wù)模擬考試題庫(kù)及答案
- 2025年北京大學(xué)招聘真題(行政管理崗)
- 急腹癥的識(shí)別與護(hù)理
- 初二歷史上冊(cè)期末真題試卷附答案解析
- 八年級(jí)上冊(cè)語(yǔ)文期末重難點(diǎn)文言文字詞梳理
- 藥品零售監(jiān)管培訓(xùn)課件
- 教育培訓(xùn)機(jī)構(gòu)招生方案設(shè)計(jì)與落地執(zhí)行
- 功血中醫(yī)護(hù)理方案
- 2025年工會(huì)協(xié)理員考試題及答案
- 中建商務(wù)經(jīng)理述職報(bào)
- 2025年安徽國(guó)風(fēng)新材料股份有限公司秋季招聘37人筆試歷年備考題庫(kù)附帶答案詳解試卷2套
評(píng)論
0/150
提交評(píng)論