2026屆海南省重點中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2026屆海南省重點中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2026屆海南省重點中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2026屆海南省重點中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2026屆海南省重點中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆海南省重點中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是公差為3的等差數(shù)列.若,,成等比數(shù)列,則的前10項和()A.165 B.138C.60 D.302.如圖,在平行六面體中,,則與向量相等的是()A. B.C. D.3.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分又不必要條件4.若過點(2,1)的圓與兩坐標軸都相切,則圓心到直線的距離為()A. B.C. D.5.若,則()A.1 B.2C.3 D.46.焦點坐標為(1,0)拋物線的標準方程是()A.y2=-4x B.y2=4xC.x2=-4y D.x2=4y7.已知定義在上的函數(shù)的導函數(shù)為,且恒有,則下列不等式一定成立的是()A. B.C. D.8.已知兩條異面直線的方向向量分別是,,則這兩條異面直線所成的角滿足()A. B.C. D.9.“”是“直線與直線垂直”的A.充分必要條件 B.充分非必要條件C.必要不充分條件 D.既不充分也不必要條件10.已知,是雙曲線的左右焦點,過的直線與曲線的右支交于兩點,則的周長的最小值為()A. B.C. D.11.直線的斜率是()A. B.C. D.12.設(shè)函數(shù)若函數(shù)有兩個零點,則實數(shù)m的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是橢圓的兩個焦點,分別是該橢圓的左頂點和上頂點,點在線段上,則的最小值為__________.14.直線與橢圓交于,兩點,線段的中點為,設(shè)直線的斜率為,直線(其中為坐標原點)的斜率為,則______.15.若函數(shù),則在點處切線的斜率為______16.在空間直角坐標系中,點關(guān)于原點的對稱點為點,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線過坐標原點,圓的方程為(1)當直線的斜率為時,求與圓相交所得的弦長;(2)設(shè)直線與圓交于兩點,,且為的中點,求直線的方程18.(12分)一個完美均勻且靈活的平衡鏈被它的兩端懸掛,且只受重力的影響,這個鏈子形成的曲線形狀被稱為懸鏈線(如圖所示).選擇適當?shù)淖鴺讼岛?,懸鏈線對應的函數(shù)近似是一個雙曲余弦函數(shù),其解析式可以為,其中,是常數(shù).(1)當時,判斷并證明的奇偶性;(2)當時,若最小值為,求的最小值.19.(12分)如圖,在四棱錐中,底面是菱形,平面,,,分別為,的中點(1)證明:平面;(2)證明:平面20.(12分)如圖,幾何體中,平面,,,,E是中點,二面角的平面角為.(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)已知圓:與直線:.(1)證明:直線過定點,并求出其坐標;(2)當時,直線l與圓C交于A,B兩點,求弦的長度.22.(10分)在①,;②,;③,.這三個條件中任選一個,補充在下面問題中.問題:已知數(shù)列的前n項和為,,___________.(1)求數(shù)列的通項公式(2)已知,求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由等差數(shù)列的定義與等比數(shù)列的性質(zhì)求得首項,然后由等差數(shù)列的前項和公式計算【詳解】因為,,成等比數(shù)列,所以,所以,解得,所以故選:A2、A【解析】根據(jù)空間向量的線性運算法則——三角形法,準確運算,即可求解.【詳解】由題意,在平行六面體中,,可得.故選:A.3、B【解析】根據(jù)充分條件和必要條件的定義判斷即可求解.【詳解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分條件,故選:B.4、B【解析】由題意可知圓心在第一象限,設(shè)圓心的坐標為,可得圓的半徑為,寫出圓的標準方程,利用點在圓上,求得實數(shù)的值,利用點到直線的距離公式可求出圓心到直線的距離.【詳解】由于圓上的點在第一象限,若圓心不在第一象限,則圓與至少與一條坐標軸相交,不合乎題意,所以圓心必在第一象限,設(shè)圓心的坐標為,則圓的半徑為,圓的標準方程為.由題意可得,可得,解得或,所以圓心的坐標為或,圓心到直線的距離均為;圓心到直線的距離均為圓心到直線的距離均為;所以,圓心到直線的距離為.故選:B.【點睛】本題考查圓心到直線距離的計算,求出圓的方程是解題的關(guān)鍵,考查計算能力,屬于中等題.5、C【解析】由二項分布的方差公式即可求解.【詳解】解:因為,所以.故選:C.6、B【解析】由題意設(shè)拋物線方程為y2=2px(p>0),結(jié)合焦點坐標求得p,則答案可求【詳解】由題意可設(shè)拋物線方程為y2=2px(p>0),由焦點坐標為(1,0),得,即p=2∴拋物的標準方程是y2=4x故選B【點睛】本題主要考查了拋物線的標準方程及其簡單的幾何性質(zhì)的應用,其中解答中熟記拋物線的幾何性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題7、D【解析】構(gòu)造函數(shù),用導數(shù)判斷函數(shù)單調(diào)性,即可求解.【詳解】根據(jù)題意,令,其中,則,∵,∴,∴在上為單調(diào)遞減函數(shù),∴,即,,則錯誤;,即,則錯誤;,即,則錯誤;,即,則正確;故選:.8、D【解析】利用向量夾角余弦公式直接求解【詳解】解:兩條異面直線的方向向量分別是,,這兩條異面直線所成的角滿足:,,故選:D9、B【解析】先由兩直線垂直求出的值,再由充分條件與必要條件的概念,即可得出結(jié)果.【詳解】因為直線與直線垂直,則,即,解得或;因此由“”能推出“直線與直線垂直”,反之不能推出,所以“”是“直線與直線垂直”的充分非必要條件.故選B【點睛】本題主要考查命題充分不必要條件的判定,熟記充分條件與必要條件的概念,以及兩直線垂直的判定條件即可,屬于常考題型.10、C【解析】根據(jù)雙曲線的定義和性質(zhì),當弦垂直于軸時,即可求出三角形的周長的最小值.【詳解】由雙曲線可知:的周長為.當軸時,周長最小值為故選:C11、D【解析】把直線方程化為斜截式即得【詳解】直線方程的斜截式為,斜率為故選:D12、D【解析】有兩個零點等價于與的圖象有兩個交點,利用導數(shù)分析函數(shù)的單調(diào)性與最值,畫出函數(shù)圖象,數(shù)形結(jié)合可得結(jié)果.【詳解】解:設(shè),則,所以在上遞減,在上遞增,,且時,,有兩個零點等價于與的圖象有兩個交點,畫出的圖象,如下圖所示,由圖可得,時,與的圖象有兩個交點,此時,函數(shù)有兩個零點,實數(shù)m的取值范圍是,故選:D.【點睛】方法點睛:本題主要考查分段函數(shù)的性質(zhì)、利用導數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點,以及數(shù)形結(jié)合思想的應用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學問題的一種重要思想方法,函數(shù)圖象是函數(shù)的一種表達形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關(guān)系提供了“形”的直觀性.歸納起來,圖象的應用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì)二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可設(shè),則,然后利用數(shù)量積坐標表示及二次函數(shù)的性質(zhì)即得.【詳解】由題可得,,設(shè),因為點P在線段AB上,所以,∴,∴當時,的最小值為.故答案為:.14、##-0.0625【解析】使用點差法即可求解﹒【詳解】設(shè),,則①-②得:,即,即.故答案為:.15、【解析】根據(jù)條件求出,,再求即答案.【詳解】∵,∴,則和,得,,∴,,∴,所以在點處切線的斜率為.故答案為:16、【解析】先利用關(guān)于原點對稱的點的坐標特征求出點,再利用空間兩點間的距離公式即可求.【詳解】因為B與關(guān)于原點對稱,故,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)、由題意可知直線的方程為,圓的圓心為,半徑為,求出圓心到直線的距離,根據(jù)勾股定理即可求出與圓相交所得的弦長;(2)、設(shè),因為為的中點,所以,又因為,均在圓上,將,坐標代入圓方程,即可求出點坐標,即可求出直線的方程【小問1詳解】由題意:直線過坐標原點,且直線的斜率為直線的方程為,圓的方程為圓的方程可化為:圓的圓心為,半徑為圓的圓心到直線:的距離為,與圓相交所得的弦長為【小問2詳解】設(shè),為的中點,又,均在圓上,或直線方程或18、(1)偶函數(shù)(2)10【解析】(1)根據(jù)偶函數(shù)定義直接判斷可知;(2)由基本不等式求得的最小值,得到a、b的關(guān)系,然后代入目標式,分離常數(shù),然后可得.【小問1詳解】當時,,定義域為R,因為所以為偶函數(shù).【小問2詳解】因為,所以,當且僅當,即時,取等號.由題知,即,因為,所以,即所以令,,則,所以,所以,當,即時,取等號.所以的最小值為10.19、(1)證明見解析;(2)證明見解析.【解析】(1)取中點,結(jié)合三角形中位線性質(zhì)可證得四邊形為平行四邊形,由此得到,由線面平行判定定理可證得結(jié)論;(2)利用菱形特點和線面垂直的性質(zhì)可證得,,由線面垂直的判定定理可證得結(jié)論.【詳解】(1)取中點,連接,分別為中點,,四邊形為菱形,為中點,,,四邊形為平行四邊形,,又平面,平面,平面.(2)連接,四邊形為菱形,,為等邊三角形,又為中點,,平面,平面,,又平面,,平面.20、(1)證明見解答;(2)【解析】(1)平面,可得,是二面角的平面角,由余弦定理可得,,從而可證平面;(2)以為坐標原點,,,所在直線為坐標軸建立如圖所示的空間直角坐標系,求平面的一個法向量與的方向向量,利用向量法可求直線與平面所成角的正弦值【小問1詳解】證明:取中點,又是中點,,,平面,平面,,平面,是二面角的平面角,,又,,在中,由余弦定理有,可得,又是中點,,平面,,又,平面,平面.【小問2詳解】解:以為坐標原點,,,所在直線為坐標軸建立如圖所示的空間直角坐標系,則,0,,,1,,,0,,,1,,1,,,0,,,1,設(shè)平面的一個法向量為,,,則,令,則,,平面的一個法向量為,,,設(shè)直線與平面所成角為,則,直線與平面所成角的正弦值為21、(1)證明見解析,(2)【解析】(1)將直線方程化為,解方程得出定點;(2)求出圓心到直線的距離,再由幾何法得出弦長.【小問1詳解】證明:因為直線,所以.令,解得,所以不論取何值,直線必過定點【小問2詳解】當時,直線為,圓心圓心到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論