版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆安徽省池州市高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點(diǎn)為F,且點(diǎn)F與圓上點(diǎn)的距離的最大值為6,則拋物線的準(zhǔn)線方程為()A. B.C. D.2.兩圓x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直線的方程為()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=03.下列雙曲線中,焦點(diǎn)在軸上且漸近線方程為的是A. B.C. D.4.在平面直角坐標(biāo)系中,已知的頂點(diǎn),,其內(nèi)切圓圓心在直線上,則頂點(diǎn)C的軌跡方程為()A. B.C. D.5.1852年英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲,西方人稱之為“中國剩余定理”.現(xiàn)有這樣一個問題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則=()A.130 B.132C.140 D.1446.已知三棱錐的各頂點(diǎn)都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.7.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點(diǎn),則等于()A. B.C.14 D.168.已知橢圓C的焦點(diǎn)為,過F2的直線與C交于A,B兩點(diǎn).若,,則C的方程為A. B.C. D.9.設(shè)函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是()A. B.C. D.10.1852年英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題解法傳至歐洲,西方人稱之為“中國剩余定理”.現(xiàn)有這樣一個問題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則=()A.130 B.132C.140 D.14411.函數(shù)的圖象在點(diǎn)處的切線的傾斜角為()A. B.0C. D.112.命題“?x0∈(0,+∞),”的否定是()A.?x∈(﹣∞,0),2x+sinx≥0B.?x∈(0,+∞),2x+sinx≥0C.?x0∈(0,+∞),D.?x0∈(﹣∞,0),二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),,若存在,成立,則實數(shù)的取值范圍為__________.14.曲線在處的切線方程是________.15.過點(diǎn)的直線與拋物線相交于,兩點(diǎn),,則直線的方程為______.16.如圖:雙曲線的左右焦點(diǎn)分別為,,過原點(diǎn)O的直線與雙曲線C相交于P,Q兩點(diǎn),其中P在右支上,且,則的面積為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知空間中三點(diǎn),,,設(shè),(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實數(shù)的值18.(12分)已知雙曲線,拋物線的焦點(diǎn)與雙曲線的一個焦點(diǎn)相同,點(diǎn)為拋物線上一點(diǎn).(1)求雙曲線的焦點(diǎn)坐標(biāo);(2)若點(diǎn)到拋物線的焦點(diǎn)的距離是5,求的值.19.(12分)設(shè):實數(shù)滿足,:實數(shù)滿足(1)若,且為真,求實數(shù)的取值范圍;(2)若是的必要不充分條件,求實數(shù)的取值范圍20.(12分)已知拋物線與直線相切.(1)求該拋物線的方程;(2)在軸的正半軸上,是否存在某個確定的點(diǎn)M,過該點(diǎn)的動直線與拋物線C交于A,B兩點(diǎn),使得為定值.如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,請說明理由.21.(12分)已知圓的圓心在直線上,與軸正半軸相切,且被直線:截得的弦長為.(1)求圓的方程;(2)設(shè)點(diǎn)在圓上運(yùn)動,點(diǎn),且點(diǎn)滿足,記點(diǎn)的軌跡為.①求的方程,并說明是什么圖形;②試探究:在直線上是否存在定點(diǎn)(異于原點(diǎn)),使得對于上任意一點(diǎn),都有為一常數(shù),若存在,求出所有滿足條件的點(diǎn)的坐標(biāo),若不存在,說明理由.22.(10分)如圖,在平面直角坐標(biāo)系上,已知圓的直徑,定直線到圓心的距離為,且直線垂直于直線,點(diǎn)是圓上異于、的任意一點(diǎn),直線、分別交與、兩點(diǎn)(1)求過點(diǎn)且與圓相切的直線方程;(2)若,求以為直徑的圓方程;(3)當(dāng)點(diǎn)變化時,以為直徑的圓是否過圓內(nèi)的一定點(diǎn),若過定點(diǎn),請求出定點(diǎn);若不過定點(diǎn),請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先求得拋物線的焦點(diǎn)坐標(biāo),再根據(jù)點(diǎn)F與圓上點(diǎn)的距離的最大值為6求解.【詳解】因為拋物線的焦點(diǎn)為F,且點(diǎn)F與圓上點(diǎn)的距離的最大值為6,所以,解得,所以拋物線準(zhǔn)線方程為,故選:D2、C【解析】兩圓方程相減得出公共弦所在直線的方程.【詳解】兩圓方程相減得,即x﹣2y+6=0則公共弦所在直線的方程為x﹣2y+6=0故選:C3、C【解析】焦點(diǎn)在軸上的是C和D,漸近線方程為,故選C考點(diǎn):1.雙曲線的標(biāo)準(zhǔn)方程;2.雙曲線的簡單幾何性質(zhì)4、A【解析】根據(jù)圖可得:為定值,利用根據(jù)雙曲線定義,所求軌跡是以、為焦點(diǎn),實軸長為6的雙曲線的右支,從而寫出其方程即得【詳解】解:如圖設(shè)與圓切點(diǎn)分別為、、,則有,,,所以根據(jù)雙曲線定義,所求軌跡是以、為焦點(diǎn),實軸長為4的雙曲線的右支(右頂點(diǎn)除外),即、,又,所以,所以方程為故選:A5、A【解析】分析數(shù)列的特點(diǎn),可知其是等差數(shù)列,寫出其通項公式,進(jìn)而求得結(jié)果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構(gòu)成首項為10,公差為12的等差數(shù)列,所以,故,故選:A6、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點(diǎn)睛】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點(diǎn)為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對角線長等于球的直徑.7、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得正確答案.【詳解】是函數(shù)的兩個不同零點(diǎn),所以,由于數(shù)列是等比數(shù)列,所以.故選:C8、B【解析】由已知可設(shè),則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設(shè),則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設(shè),則,由橢圓的定義有.在和中,由余弦定理得,又互補(bǔ),,兩式消去,得,解得.所求橢圓方程為,故選B【點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實了直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng)9、B【解析】分析可知,對任意的恒成立,由參變量分離法可得出,求出在時的取值范圍,即可得出實數(shù)的取值范圍.【詳解】因為,則,由題意可知對任意的恒成立,則對任意的恒成立,當(dāng)時,,.故選:B.10、A【解析】分析數(shù)列的特點(diǎn),可知其是等差數(shù)列,寫出其通項公式,進(jìn)而求得結(jié)果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構(gòu)成首項為10,公差為12的等差數(shù)列,所以,故,故選:A.11、A【解析】求出導(dǎo)函數(shù),計算得切線斜率,由斜率求得傾斜角【詳解】,設(shè)傾斜角為,則,,故選:A12、B【解析】利用特稱命題的否定是全稱命題,寫出結(jié)果即可【詳解】命題“?x0∈(0,+∞),”的否定是“?x∈(0,+∞),2x+sinx≥0”故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由不等式分離參數(shù),令,則求即可【詳解】由,得,令,則當(dāng)時,;當(dāng)時,;所以在上單調(diào)遞減,在上單調(diào)遞增,故由于存在,成立,則故答案為:14、【解析】求出函數(shù)的導(dǎo)函數(shù),把代入即可得到切線的斜率,然后根據(jù)和斜率寫出切線的方程即可.【詳解】解:由函數(shù)知,把代入得到切線的斜率則切線方程為:,即.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題15、##【解析】根據(jù)拋物線方程可得焦點(diǎn)坐標(biāo),進(jìn)而點(diǎn)P為拋物線的焦點(diǎn),設(shè),利用拋物線的定義可得,有軸,即可得出結(jié)果.【詳解】由題意知,拋物線的焦點(diǎn)坐標(biāo),又,所以點(diǎn)P為拋物線的焦點(diǎn),設(shè),由,由拋物線的定義得,解得,所以AB垂直與x軸,所以直線AB的方程為:.故答案為:16、24【解析】利用雙曲線定義結(jié)合已知求出,,再利用雙曲線的對稱性計算作答.【詳解】依題意,,,又,解得,,則有,即,連接,如圖,因過原點(diǎn)O的直線與雙曲線C相交于P,Q兩點(diǎn),由雙曲線的對稱性知,P,Q關(guān)于原點(diǎn)O對稱,因此,四邊形是平行四邊形,,所以的面積為24.故答案為:24三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)坐標(biāo)表示出、,利用向量夾角的坐標(biāo)表示求夾角余弦值;(2)坐標(biāo)表示出k+、k-2,利用向量垂直的坐標(biāo)表示列方程求的值.【詳解】由題設(shè),=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.18、(1);(2).【解析】(1)根據(jù)雙曲線的方程求出即得雙曲線的焦點(diǎn)坐標(biāo);(2)先求出的值,再解方程得解.【詳解】(1)因為雙曲線的方程為,所以.所以.所以.所以雙曲線的焦點(diǎn)坐標(biāo)分別為.(2)因為拋物線的焦點(diǎn)與雙曲線的一個焦點(diǎn)相同,所以拋物線的焦點(diǎn)坐標(biāo)是(2,0),所以.因為點(diǎn)為拋物線上一點(diǎn),所以點(diǎn)到拋物線的焦點(diǎn)的距離等于點(diǎn)到拋物線的準(zhǔn)線的距離.因為點(diǎn)到拋物線的焦點(diǎn)的距離是5,即,所以.【點(diǎn)睛】本題主要考查雙曲線的焦點(diǎn)坐標(biāo)的求法,考查拋物線的定義和幾何性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.19、(1)(2)【解析】(1)根據(jù)二次不等式與分式不等式的求解方法求得命題p,q為真時實數(shù)x的取值范圍,再求交集即可;(2)先求得,再根據(jù)是的必要不充分條件可得,再根據(jù)集合包含關(guān)系,根據(jù)區(qū)間端點(diǎn)列不等式求解即可【小問1詳解】當(dāng)時,,解得,即p為真時,實數(shù)x的取值范圍為.由,解得,即q為真時,實數(shù)x的取值范圍為若為真,則,解得實數(shù)x的取值范圍為【小問2詳解】若p是q的必要不充分條件,則且設(shè),,則,又由,得,因為,則,有,解得因此a的取值范圍為20、(1);(2).【解析】(1)直線與拋物線相切,所以有,可解得,得拋物線方程.(2)聯(lián)立直線與拋物線有,把目標(biāo)式坐標(biāo)化可得與無關(guān),可得.試題解析:(1)聯(lián)立方程有,,有,由于直線與拋物線相切,得,所以.(2)假設(shè)存在滿足條件的點(diǎn),直線,有,,設(shè),有,,,,當(dāng)時,為定值,所以.21、(1);(2)①,圓;②存在,.【解析】(1)設(shè)圓心,根據(jù)題意,得到半徑,根據(jù)弦長的幾何表示,由題中條件,列出方程求解,得出,從而可得圓心和半徑,進(jìn)而可得出結(jié)果;(2)①設(shè),根據(jù)向量的坐標(biāo)表示,由題中條件,得到,代入圓的方程,即可得出結(jié)果;②假設(shè)存在一點(diǎn)滿足(其中為常數(shù)),設(shè),根據(jù)題意,得到,再由①,得到,兩式聯(lián)立化簡整理,得到,推出,求解得出,即可得出結(jié)果.【詳解】(1)設(shè)圓心,則由圓與軸正半軸相切,可得半徑.∵圓心到直線的距離,由,解得.故圓心為或,半徑等于.∵圓與軸正半軸相切圓心只能為故圓的方程為;(2)①設(shè),則:,,∵點(diǎn)A在圓上運(yùn)動即:所以點(diǎn)的軌跡方程為,它是一個以為圓心,以為半徑的圓;②假設(shè)存在一點(diǎn)滿足(其中為常數(shù))設(shè),則:整理化簡得:,∵在軌跡上,化簡得:,所以整理得,解得:;存在滿足題目條件.【點(diǎn)睛】本題主要考查求圓的方程,考查圓中的定點(diǎn)問題,涉及圓的弦長公式等,屬于??碱}型.22、(1)或(2)(3)過定點(diǎn),定點(diǎn)坐標(biāo)為【解析】(1)對所求直線的斜率是否存在進(jìn)行分類討論,在所求直線斜率不存在時,直接驗證直線與圓相切;在所求直線斜率存在時,設(shè)所求直線方程為,利用點(diǎn)到直線的距離公式可得出關(guān)于的等式,求出的值,綜合可得出所求直線的方程;(2)分點(diǎn)在軸上方、點(diǎn)在軸下方兩種情況討論,求出點(diǎn)、的坐標(biāo),可得出所求圓的圓心坐標(biāo)和半徑,即可得出所求圓的方程;(3)設(shè)直線的方程為,其中,求出點(diǎn)、的坐標(biāo),可求得以線段為直徑的圓的方程,并化簡圓的方程,可求得定點(diǎn)的坐標(biāo).【小問1詳解】解:易知圓的方程為,圓心為原點(diǎn),半徑為,若所求直線的斜率不存在,則所求直線的方程為,此時直線與圓相切,合乎題意,若所求直線的斜率存在,設(shè)所求直線的方程為,即,由已知可得,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026四川成都市錦江區(qū)國有企業(yè)招聘18人筆試備考題庫及答案解析
- 2026年電工保命考試題及答案(名師系列)
- 2026安徽淮南市傳染病醫(yī)院人員招聘筆試備考試題及答案解析
- 2026年惠州衛(wèi)生職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性考試題庫附答案
- 2026年天津市單招職業(yè)傾向性考試模擬測試卷附答案
- 2026年德陽建院單招測試題附答案
- 2026年春考單招試題附答案
- 2026年普通大學(xué)生心理考試題庫及完整答案一套
- 2026年山東華宇工學(xué)院單招職業(yè)適應(yīng)性考試題庫附答案
- 2026年安徽工貿(mào)職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試模擬測試卷及答案1套
- 工程力學(xué)(本)2024國開機(jī)考答案
- 單位消防安全教育培訓(xùn)記錄表
- 江蘇省工程質(zhì)量安全手冊實施細(xì)則房屋建筑工程篇(2022年版)上冊:質(zhì)量分冊
- 頂板離層儀管理規(guī)定
- GA/T 1499-2018卷簾門安全性要求
- GA/T 1359-2018信息安全技術(shù)信息資產(chǎn)安全管理產(chǎn)品安全技術(shù)要求
- 長輸管道施工技術(shù)(完整版)
- 2022-2023學(xué)年新教材高中化學(xué)研究與實踐1了解純堿的生產(chǎn)歷史課件新人教版必修第一冊
- 車輛四輪定位培訓(xùn)課件
- 京杭運(yùn)河船閘擴(kuò)容工程邵伯三線船閘工程總體施工組織設(shè)計--水工
- 2022年醫(yī)院出院證明書(模版)
評論
0/150
提交評論