版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2026屆陜西省西藏民族大學附屬中學數(shù)學高二上期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線上一點M與焦點間的距離是3,則點M的縱坐標為()A.1 B.2C.3 D.42.某老師希望調(diào)查全校學生平均每天的自習時間.該教師調(diào)查了60位學生,發(fā)現(xiàn)他們每天的平均自習時間是3.5小時.這里的總體是()A.楊高的全校學生;B.楊高的全校學生的平均每天自習時間;C.所調(diào)查的60名學生;D.所調(diào)查的60名學生的平均每天自習時間.3.已知三棱錐的各頂點都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.4.在復平面內(nèi),復數(shù)對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限5.若,則下列不等式不能成立是()A. B.C. D.6.若等比數(shù)列中,,,那么()A.20 B.18C.16 D.147.已知橢圓的離心率為,雙曲線的離心率為,則()A. B.C. D.8.拋物線的準線方程是()A. B.C. D.9.下列雙曲線中,以為一個焦點,以為一個頂點的雙曲線方程是()A. B.C. D.10.已知拋物線的焦點坐標是,則拋物線的標準方程為A. B.C. D.11.已知點到直線:的距離為1,則等于()A. B.C. D.12.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)中相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線,則以下結(jié)論正確的是______.①曲線C關于點對稱;②曲線C關于y軸對稱;③曲線C被x軸所截得的弦長為2;④曲線C上的點到原點距離都不超過2.14.直線l:y=-x+m與曲線有兩個公共點,則實數(shù)m的取值范圍是_______.15.若隨機變量,則______.16.一條直線經(jīng)過,并且傾斜角是直線的傾斜角的2倍,則直線的方程為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在邊長為4的等邊三角形ABC中,D,E,F(xiàn)分別是AB,AC,BC的中點,沿DE把折起,得到如圖2所示的四棱錐.(1)證明:平面.(2)若二面角的大小為60°,求平面與平面的夾角的大小.18.(12分)已知等比數(shù)列滿足,(1)求數(shù)列通項公式;(2)記,求數(shù)列的前n項和19.(12分)中,三內(nèi)角A,B,C所對的邊分別為a,b,c,已知(1)求角A;(2)若,角A的角平分線交于D,,求a20.(12分)已知函數(shù),數(shù)列的前n項和為,且對一切正整數(shù)n、點都在因數(shù)的圖象上(1)求數(shù)列的通項公式;(2)令,數(shù)列的前n項和,求證:21.(12分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.22.(10分)2022北京冬奧會即將開始,北京某大學鼓勵學生積極參與志愿者的選拔.某學院有6名學生通過了志愿者選拔,其中4名男生,2名女生(1)若從中挑選2名志愿者,求入選者正好是一名男生和一名女生的概率;(2)若從6名志愿者中任選3人負責滑雪項目服務崗位,那么現(xiàn)將6人分為A、B兩組進行滑雪項目相關知識及志愿者服務知識競賽,共賽10局.A、B兩組分數(shù)(單位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139從統(tǒng)計學角度看,應選擇哪個組更合適?理由是什么?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用拋物線的定義求解即可【詳解】拋物線的焦點為,準線方程為,因為拋物線上一點M與焦點間的距離是3,所以,得,即點M的縱坐標為2,故選:B2、B【解析】由總體的概念可得答案.【詳解】某老師希望調(diào)查全校學生平均每天的自習時間,該教師調(diào)查了60位學生,發(fā)現(xiàn)他們每天的平均自習時間是3.5小時,這里的總體是全校學生平均每天的自習時間.故選:B.3、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點睛】與球有關的組合體問題,一種是內(nèi)切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數(shù)量關系,并作出合適的截面圖,如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.4、D【解析】根據(jù)復數(shù)在復平面內(nèi)的坐標表示可得答案.【詳解】解:由題意得:在復平面上對應的點為,該點在第四象限.故選:D5、C【解析】利用不等式的性質(zhì)可判斷ABD,利用賦值法即可判斷C,如.【詳解】解:因為,所以,所以,,,故ABD正確;對于C,若,則,故C錯誤.故選:C.6、B【解析】利用等比數(shù)列的基本量進行計算即可【詳解】設等比數(shù)列的公比為,則,所以故選:B7、D【解析】根據(jù)給定的方程求出離心率,的表達式,再計算判斷作答.【詳解】因橢圓的離心率為,則有,因雙曲線的離心率為,則有,所以.故選:D8、D【解析】將拋物線的方程化為標準方程,可得出該拋物線的準線方程.【詳解】拋物線的標準方程為,則,可得,因此,該拋物線的準線方程為.故選:D.9、C【解析】設出雙曲線方程,根據(jù)題意,求得,即可選擇.【詳解】因為雙曲線的一個焦點是,故可設雙曲線方程為,且;又為一個頂點,故可得,解得,則雙曲線方程為:.故選:.10、D【解析】根據(jù)拋物線的焦點坐標得到2p=4,進而得到方程.【詳解】拋物線的焦點坐標是,即p=2,2p=4,故得到方程為.故答案為D.【點睛】這個題目考查了拋物線的標準方程的求法,題目較為簡單.11、D【解析】利用點到直線的距離公式,即可求得參數(shù)的值.【詳解】因為點到直線:的距離為1,故可得,整理得,解得.故選:.12、C【解析】根據(jù)莖葉圖中數(shù)據(jù)的波動情況,可直接判斷方差不同;根據(jù)莖葉圖中的數(shù)據(jù),分別計算極差、中位數(shù)、平均數(shù),即可得出結(jié)果.【詳解】由莖葉圖可得:甲的數(shù)據(jù)更集中,乙的數(shù)據(jù)較分散,所以甲與乙的方差不同;甲的極差為;乙的極差為,所以甲與乙的極差不同;甲的中位數(shù)為,乙的中位數(shù)為,所以中位數(shù)不同;甲的平均數(shù)為,乙的平均數(shù)為,所以甲、乙的平均數(shù)相同;故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、②④【解析】將x換成,將y換成,若方程不變則關于原點對稱;將x換成,曲線的方程不變則關于y軸對稱;令通過解方程即可求得被x軸所截得的弦長;利用基本不等式即可判斷出曲線C上y軸右側(cè)的點到原點距離是否不超過2,根據(jù)曲線C關于y軸對稱,即可判斷出曲線C上的點到原點距離是否都不超過2.【詳解】對于①,將x換成,將y換成,方程改變,則曲線C關于點不對稱,故①錯誤;對于②,將x換成,曲線的方程不變,則曲線C關于y軸對稱,故②正確;對于③,令得,,解得,即曲線C與x軸的交點為和,則曲線C被x軸所截得的弦長為,故③錯誤;對于④,當時,,可得,當且僅當時取等號,即,則,即曲線C上y軸右側(cè)的點到原點的距離都不超過2,此曲線關于y軸對稱,即曲線C上y軸左側(cè)的點到原點的距離也不超過2,故④正確;故答案為:②④.14、【解析】曲線表示圓的右半圓,結(jié)合的幾何意義,得出實數(shù)m的取值范圍.【詳解】曲線表示圓的右半圓,當直線與相切時,,即,由表示直線的截距,因為直線l與曲線有兩個公共點,由圖可知,所以.故答案為:.15、2【解析】根據(jù)給定條件利用二項分布的期望公式直接計算作答.【詳解】因為隨機變量,所以.故答案:216、【解析】先求出直線傾斜角,從而可求得直線的傾斜角,則可求出直線的斜率,進而可求出直線的方程【詳解】因為直線的斜率為,所以直線的傾斜角為,所以直線的傾斜角為,所以直線的斜率為,因為直線經(jīng)過,所以直線的方程為,即,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由結(jié)合線面平行的判定即可推理作答.(2)取DE的中點M,連接,F(xiàn)M,證明平面平面,再建立空間直角坐標系,借助空間向量推理、計算作答.【小問1詳解】在中,因為E,F(xiàn)分別是AC,BC的中點,所以,則圖2中,,而平面,平面,所以平面.【小問2詳解】依題意,是正三角形,四邊形是菱形,取DE的中點M,連接,F(xiàn)M,如圖,則,,即是二面角的平面角,,取中點N,連接,則有,在中,由余弦定理得:,于是有,,即,而,,,平面,則平面,又平面,從而有平面平面,因平面平面,平面,因此,平面,過點N作,則兩兩垂直,以點N為原點,射線分別為x,y,z軸非負半軸建立空間直角坐標系,則,,,,,,,設平面的法向量,則,令,得,設平面的法向量,則,令,得,顯然有,即,所以平面與平面的夾角為.【點睛】方法點睛:利用向量法求二面角:(1)找法向量,分別求出兩個半平面所在平面的法向量,然后求得法向量的夾角,結(jié)合圖形得到二面角的大??;(2)找與交線垂直的直線的方向向量,分別在二面角的兩個半平面內(nèi)找到與交線垂直且以垂足為起點的直線的方向向量,則這兩個向量的夾角就是二面角的平面角18、(1)(2)【解析】(1)通過基本量列方程組可得;(2)由裂項相消法可解【小問1詳解】由題意得解得,所以數(shù)列的通項公式為【小問2詳解】由(1)知,則所以19、(1)(2)【解析】(1)根據(jù)正弦定理統(tǒng)一三角函數(shù)化簡即可求解;(2)根據(jù)角平分線建立三角形面積方程求出b,再由余弦定理求解即可.【小問1詳解】由及正弦定理,得∵,∴∵,∴∵,∴【小問2詳解】∵,∴,解得由余弦定理,得,∴.20、(1)(2)證明見解析【解析】(1)根據(jù)數(shù)列中和的關系,即可解出;(2)利用裂項相消法求出,即可進一步汽車其范圍.【小問1詳解】由題知,當時,,當時,也滿足上式,綜上,;【小問2詳解】,則,由,得,所以.21、(1)(2)【解析】(1)建立如圖所示的空間直角坐標系,用空間向量法求線面角;(2)用空間向量法求二面角【小問1詳解】以D為坐標原點,射線方向為x,y,z軸正方向建立空間直角坐標系.當時,,所以,設平面的法向量為,所以,即不妨得,,又,所以,則【小問2詳解】在長方體中,因為平面,所以平面平面,因為平面與平面交于,因為四邊形為正方形,所以,所以平面,即為平面的一個法向量,,所以,又平面的法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 規(guī)范景點門票管理制度
- 服裝工廠衛(wèi)生制度規(guī)范
- 燃氣閥門開關制度規(guī)范
- 規(guī)范小學收費行為制度
- 建筑租賃回收合同范本
- 技術服務合同終止協(xié)議
- 床上用品定制合同范本
- 手工對聯(lián)外包合同范本
- 小區(qū)保潔員合同協(xié)議書
- 承包電纜鋪設合同范本
- 2025版國家開放大學法學本科《知識產(chǎn)權(quán)法》期末紙質(zhì)考試總題庫
- DB11T 354-2023 生活垃圾收集運輸管理規(guī)范
- 赤石特大橋施工安全風險評估報告
- 九宮數(shù)獨200題(附答案全)
- QBT 2770-2006 羽毛球拍行業(yè)標準
- 部編版八年級上冊語文《期末考試卷》及答案
- 售后服務流程管理手冊
- 2020-2021學年新概念英語第二冊-Lesson14-同步習題(含答案)
- 地下車庫建筑結(jié)構(gòu)設計土木工程畢業(yè)設計
- PDM結(jié)構(gòu)設計操作指南v1
- 投資學-課件(全)
評論
0/150
提交評論