2026屆上海市張堰中學高二數學第一學期期末經典模擬試題含解析_第1頁
2026屆上海市張堰中學高二數學第一學期期末經典模擬試題含解析_第2頁
2026屆上海市張堰中學高二數學第一學期期末經典模擬試題含解析_第3頁
2026屆上海市張堰中學高二數學第一學期期末經典模擬試題含解析_第4頁
2026屆上海市張堰中學高二數學第一學期期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆上海市張堰中學高二數學第一學期期末經典模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為數列的前n項和,且,則=()A.26 B.19C.11 D.92.設函數若函數有兩個零點,則實數m的取值范圍是()A. B.C. D.3.已知數列滿足,則()A.32 B.C.1320 D.4.命題“,均有”的否定為()A.,均有 B.,使得C.,使得 D.,均有5.已知橢圓及以下3個函數:①;②;③,其中函數圖象能等分該橢圓面積的函數個數有()A.0個 B.1個C.2個 D.3個6.雙曲線的焦點坐標是()A. B.C. D.7.古希臘數學家歐幾里得在《幾何原本》中描述了圓錐曲線共性,并給出了圓錐曲線的統一定義,只可惜對這一定義歐幾里得沒有給出證明.經過了500年,到了3世紀,希臘數學家帕普斯在他的著作《數學匯篇》中,完善了歐幾里得關于圓錐曲線的統一定義,并對這一定義進行了證明.他指出,到定點的距離與到定直線的距離的比是常數的點的軌跡叫做圓錐曲線;當時,軌跡為橢圓;當時,軌跡為拋物線;當時,軌跡為雙曲線.現有方程表示的曲線是雙曲線,則的取值范圍為()A. B.C. D.8.小王與小張二人參加某射擊比賽預賽的五次測試成績如下表所示,設小王與小張成績的樣本平均數分別為和,方差分別為和,則()第一次第二次第三次第四次第五次小王得分(環(huán))910579小張得分(環(huán))67557A. B.C. D.9.已知在空間直角坐標系(O為坐標原點)中,點關于x軸的對稱點為點B,則z軸與平面OAB所成的線面角為()A. B.C. D.10.關于實數a,b,c,下列說法正確的是()A.如果,則,,成等差數列B.如果,則,,成等比數列C.如果,則,,成等差數列D.如果,則,,成等差數列11.圓與圓的位置關系是()A.相交 B.相離C.內切 D.外切12.設為可導函數,且滿足,則曲線在點處的切線的斜率是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.復數的實部為_________14.已知,,,…,為拋物線:上的點,為拋物線的焦點.在等比數列中,,,,…,.則的橫坐標為__________15.從雙曲線上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.16.圓和圓的公切線的條數為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數的圖象在點P(0,f(0))處的切線方程是(1)求a、b的值;(2)求函數的極值.18.(12分)在平面直角坐標系中,動點到直線的距離與到點的距離之差為.(1)求動點的軌跡的方程;(2)過點的直線與交于、兩點,若的面積為,求直線的方程.19.(12分)已知函數的圖象在點處的切線與直線平行(是自然對數的底數).(1)求的值;(2)若在上恒成立,求實數的取值范圍.20.(12分)如圖,AB是半圓O的直徑,C是半圓上一點,M是PB的中點,平面ABC,且,,.(1)求證:平面PAC;(2)求三棱錐M—ABC體積.21.(12分)在直三棱柱中,、、、分別為中點,.(1)求證:平面(2)求二面角的余弦值22.(10分)在平面直角坐標系中,過點且傾斜角為的直線與曲線(為參數)交于兩點.(1)將曲線的參數方程轉化為普通方程;(2)求的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先求得,然后求得.【詳解】依題意,當時,,當時,,,所以,所以.故選:D2、D【解析】有兩個零點等價于與的圖象有兩個交點,利用導數分析函數的單調性與最值,畫出函數圖象,數形結合可得結果.【詳解】解:設,則,所以在上遞減,在上遞增,,且時,,有兩個零點等價于與的圖象有兩個交點,畫出的圖象,如下圖所示,由圖可得,時,與的圖象有兩個交點,此時,函數有兩個零點,實數m的取值范圍是,故選:D.【點睛】方法點睛:本題主要考查分段函數的性質、利用導數研究函數的單調性、函數的零點,以及數形結合思想的應用,屬于難題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,函數圖象是函數的一種表達形式,它形象地揭示了函數的性質,為研究函數的數量關系提供了“形”的直觀性.歸納起來,圖象的應用常見的命題探究角度有:1、確定方程根的個數;2、求參數的取值范圍;3、求不等式的解集;4、研究函數性質3、A【解析】先令,求出,再當時,由,可得,然后兩式相比,求出,從而可求出,進而可求得答案【詳解】當時,,當時,由,可得,兩式相除可得,所以,所以,故選:A4、C【解析】全稱命題的否定是特稱命題【詳解】根據全稱命題的否定是特稱命題,所以命題“,均有”的否定為“,使得”故選:C5、C【解析】由橢圓的幾何性質可得橢圓的圖像關于原點對稱,因為函數,函數為奇函數,其圖像關于原點對稱,則①②滿足題意,對于函數在軸右側時,,只有時,,即函數在軸右側的圖像顯然不能等分橢圓在軸右側的圖像的面積,又函數為偶函數,其圖像關于軸對稱,則函數在軸左側的圖像顯然也不能等分橢圓在軸左側的圖像的面積,即函數的圖像不能等分該橢圓面積,得解.【詳解】解:因為橢圓的圖像關于原點對稱,對于①,函數為奇函數,其圖像關于原點對稱,即可知的圖象能等分該橢圓面積;對于②,函數為奇函數,其圖像關于原點對稱,即可知的圖象能等分該橢圓面積;對于③,對于函數在軸右側時,,只有時,,即函數在軸右側的圖像(如圖)顯然不能等分橢圓在軸右側的圖像的面積,又函數為偶函數,其圖像關于軸對稱,則函數在軸左側的圖像顯然也不能等分橢圓在軸左側的圖像的面積,即函數的圖像不能等分該橢圓面積,即函數圖象能等分該橢圓面積的函數個數有2個,故選C.【點睛】本題考查了橢圓的幾何性質、函數的奇偶性及函數的對稱性,重點考查了函數的性質,屬基礎題.6、B【解析】根據雙曲線的方程,求得,結合雙曲線的幾何性質,即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點再軸上,所以雙曲線的焦點坐標為.故選:B.7、C【解析】對方程進行化簡可得雙曲線上一點到定點與定直線之比為常數,進而可得結果.【詳解】已知方程可以變形為,即,∴其表示雙曲線上一點到定點與定直線之比為常數,又由,可得,故選:C.8、C【解析】根據圖表數據可以看出小王和小張的平均成績和成績波動情況.【詳解】解:從圖表中可以看出小王每次的成績均不低于小張,但是小王成績波動比較大,故設小王與小張成績的樣本平均數分別為和,方差分別為和.可知故選:C9、B【解析】根據點關于坐標軸對稱的性質,結合空間向量夾角公式進行求解即可.【詳解】因為點關于x軸的對稱點為,所以,設平面OAB的一個法向量為,則得所以,令,得,所以又z軸的一個方向向量為,設z軸與平面OAB所成的線面角為,則,所以所求的線面角為,故選:B10、B【解析】根據給定條件結合取特值、推理計算等方法逐一分析各個選項并判斷即可作答.【詳解】對于A,若,取,而,即,,不成等差數列,A不正確;對于B,若,則,即,,成等比數列,B正確;對于C,若,取,而,,,不成等差數列,C不正確;對于D,a,b,c是實數,若,顯然都可以為負數或者0,此時a,b,c無對數,D不正確.故選:B11、A【解析】求出兩圓的圓心及半徑,求出圓心距,從而可得出結論.【詳解】解:圓的圓心為,半徑為,圓圓心為,半徑為,則兩圓圓心距,因為,所以兩圓相交.故選:A.12、D【解析】由題,為可導函數,,即曲線在點處的切線的斜率是,選D【點睛】本題考查導數的定義,切線的斜率,以及極限的運算,本題解題的關鍵是對所給的極限式進行整理,得到符合導數定義的形式二、填空題:本題共4小題,每小題5分,共20分。13、【解析】復數,其實部為.考點:復數的乘法運算、實部.14、【解析】利用在拋物線上可求得,結合等比數列的公比可求得,利用拋物線的焦半徑公式即可求得結果.【詳解】在拋物線上,,解得:,拋物線;數列為等比數列,又,,公比,,即,解得:,即的橫坐標為.故答案為:.15、.【解析】根據題意,設,進而根據中點坐標公式及點P已知雙曲線上求得答案.【詳解】由題意,設,則,則,即,因為,則,即的軌跡方程為.16、3【解析】判斷出兩個圓的位置關系,由此確定公切線的條數.內含關系0條公切線,內切關系1條公切線,相交關系2條公切線,外切關系3條公切線,外離關系4條公切線?!驹斀狻坑深}知圓:的圓心,半徑,圓:的圓心,半徑,所以,,所以兩圓外切,所以兩圓共有3條公切線.故答案為:3三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)答案見解析【解析】(1)求出曲線的斜率,切點坐標,求出函數的導數,利用導函數值域斜率的關系,即可求出,(2)求出導函數的符號,判斷函數的單調性即可得到函數的極值【詳解】(1)因為函數的圖象在點P(0,f(0))處的切線方程是,所以切線斜率是,且,求得,即點又函數,則所以依題意得解得(2)由(1)知所以令,解得或當,或;當,所以函數的單調遞增區(qū)間是,,單調遞減區(qū)間是所以當變化時,和變化情況如下表:0極大值極小值所以,18、(1);(2)或.【解析】(1)本題首先可以設動點,然后根據題意得出,通過化簡即可得出結果;(2)本題首先可排除直線斜率不存在時情況,然后設直線方程為,通過聯立方程并化簡得出,則,,再然后根據得出,最后根據的面積為即可得出結果.【詳解】(1)設動點,因為動點到直線的距離與到點的距離之差為,所以,化簡可得,故軌跡方程為.(2)當直線斜率不存在時,其方程為,此時,與只有一個交點,不符合題意,當直線斜率存在時,設其方程為,聯立方程,化簡得,,令、,則,,因為,所以,因為的面積為,所以,解得或,故直線方程為:或.【點睛】本題考查動點的軌跡方程的求法以及拋物線與直線相交的相關問題的求解,能否根據題意列出等式是求動點的軌跡方程的關鍵,考查韋達定理的應用,在計算時要注意斜率為這種情況,考查計算能力,考查轉化與化歸思想,是中檔題.19、(1)(2)【解析】(1)求出函數的導函數,根據題意結合導數的幾何意義列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,從而,令,利用導數求出函數的最小值,即可求得實數的取值范圍【小問1詳解】解:,因為函數的圖象在點處的切線與直線平行,所以,解得;【小問2詳解】解:在上恒成立,即在上恒成立,,,令,則,當時,;當時,,函數在上單調遞減,有上單調遞增,,,即實數的取值范圍是20、(1)證明見解析(2)2【解析】(1)依題意可得,再由平面,得到,即可證明平面;(2)連接,可證,即可得到平面,為三棱錐的高,再根據錐體的體積公式計算可得;【詳解】(1)證明:因為是半圓的直徑,所以.因為平面,平面,所以,又因為平面,平面,且所以平面.(2)解:因為,,所以,.連接.因為、分別是,的中點,所以,.又平面.所以平面.因此為三棱錐的高.所以.【點睛】本題考查線面垂直的證明,錐體的體積的計算,屬于中檔題.21、(1)見解析;(2)【解析】(1)取中點,連接,根據直棱柱的特征,易知,再由、分別為的中點,根據中位線定理,可得,得到四邊形為平行四邊形,再利用線面平行的判定定理證明.(2)取的中點,連接,以為原點,、、分別為、、軸建立空間直角坐標系,則.,再分別求得平面和平面的一個法向量,利用面面角的向量公式求解.【詳解】(1)證明:如圖所示:取中點,連接,易知,、分別為的中點,∴,∴故四邊形為平行四邊形,∴,∵平面,平面,平面(2)取的中點,連接,以為原點,、、分別為、、軸建立如圖所示的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論