版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省保定市曲陽縣一中2026屆數(shù)學高二上期末質量檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知x,y滿足約束條件,則的最大值為()A.3 B.C.1 D.2.已知集合A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B=()A.{-2,-1,0,1} B.{-1,0,1}C.{-2,-1} D.{-2,-1,0}3.命題:,的否定為()A., B.不存在,C., D.,4.執(zhí)行如圖所示的程序框圖,若輸入的的值為3,則輸出的的值為()A.3 B.6C.9 D.125.已知橢圓的兩個焦點分別為,若橢圓上不存在點,使得是鈍角,則橢圓離心率的取值范圍是()A. B.C. D.6.已知的周長為,頂點、的坐標分別為、,則點的軌跡方程為()A. B.C. D.7.設是雙曲線的兩個焦點,為坐標原點,點在上且,則的面積為()A. B.3C. D.28.設,則是的A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件9.已知雙曲線的虛軸長是實軸長的2倍,則實數(shù)的值是A. B.C. D.10.在中,角A,B,C所對的邊分別為a,b,c,若,,的面積為10,則的值為()A. B.C. D.11.將點的極坐標化成直角坐標是(
)A. B.C. D.12.已知雙曲線,點F為其左焦點,點B,若BF所在直線與雙曲線的其中一條漸近線垂直,則該雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點與的右焦點重合,則__________.14.設正方形的邊長是,在該正方形區(qū)域內隨機取一個點,則此點到點的距離大于的概率是_____15.點到直線的距離為________.16.圓錐曲線有良好的光學性質,光線從橢圓的一個焦點發(fā)出,被橢圓反射后會經過橢圓的另一個焦點(如左圖);光線從雙曲線的一個焦點發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點射出(如中圖).封閉曲線E(如右圖)是由橢圓C1:+=1和雙曲線C2:-=1在y軸右側的一部分(實線)圍成.光線從橢圓C1上一點P0出發(fā),經過點F2,然后在曲線E內多次反射,反射點依次為P1,P2,P3,P4,…,若P0,P4重合,則光線從P0到P4所經過的路程為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系內,已知的三個頂點坐標分別為(1)求邊垂直平分線所在的直線的方程;(2)若的面積為5,求點的坐標18.(12分)已知函數(shù),其中,.(1)當時,求曲線在點處切線方程;(2)求函數(shù)的單調區(qū)間.19.(12分)在平面直角坐標系中,動點到直線的距離與到點的距離之差為.(1)求動點的軌跡的方程;(2)過點的直線與交于、兩點,若的面積為,求直線的方程.20.(12分)已知函數(shù)(Ⅰ)若的圖象在點處的切線與軸負半軸有公共點,求的取值范圍;(Ⅱ)當時,求的最值21.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.22.(10分)(1)已知雙曲線的離心率為2,求E的漸近線方程;(2)已知F是拋物線的焦點,是C上一點,且,求C的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意首先畫出可行域,然后結合目標函數(shù)的幾何意義求解最大值即可.【詳解】繪制不等式組表示的平面區(qū)域如圖所示,結合目標函數(shù)的幾何意義可知目標函數(shù)在點A處取得最大值,聯(lián)立直線方程:,可得點A的坐標為:,據(jù)此可知目標函數(shù)的最大值為:.故選:A【點睛】方法點睛:求線性目標函數(shù)的最值,當時,直線過可行域且在y軸上截距最大時,z值最大,在y軸截距最小時,z值最??;當時,直線過可行域且在y軸上截距最大時,z值最小,在y軸上截距最小時,z值最大.2、D【解析】根據(jù)集合交集的運算法則計算即可.【詳解】∵A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B={-2,-1,0}.故選:D.3、D【解析】含有量詞的命題的否定方法:先改變量詞,然后再否定結論即可【詳解】解:命題:,的否定為:,故選:D4、A【解析】模擬執(zhí)行程序框圖,根據(jù)輸入數(shù)據(jù),即可求得輸出數(shù)據(jù).【詳解】當時,不滿足,故,即輸出的的值為.故選:.5、C【解析】點P取端軸的一個端點時,使得∠F1PF2是最大角.已知橢圓上不存在點P,使得∠F1PF2是鈍角,可得b≥c,利用離心率計算公式即可得出【詳解】∵點P取端軸的一個端點時,使得∠F1PF2是最大角已知橢圓上不存在點P,使得∠F1PF2是鈍角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故選C【點睛】本題考查了橢圓的標準方程及其性質,考查了推理能力與計算能力,屬于中檔題.求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍).6、D【解析】分析可知點的軌跡是除去長軸端點的橢圓,求出、的值,結合橢圓焦點的位置可得出頂點的軌跡方程.【詳解】由已知可得,,且、、三點不共線,故點的軌跡是以、為焦點,且除去長軸端點的橢圓,由已知可得,得,,則,因此,點的軌跡方程為.故選:D.7、B【解析】由是以P為直角直角三角形得到,再利用雙曲線的定義得到,聯(lián)立即可得到,代入中計算即可.【詳解】由已知,不妨設,則,因為,所以點在以為直徑的圓上,即是以P為直角頂點的直角三角形,故,即,又,所以,解得,所以故選:B【點晴】本題考查雙曲線中焦點三角形面積的計算問題,涉及到雙曲線的定義,考查學生的數(shù)學運算能力,是一道中檔題.8、B【解析】,,所以是必要不充分條件,故選B.考點:1.指、對數(shù)函數(shù)的性質;2.充分條件與必要條件.9、C【解析】由方程表示雙曲線知,又雙曲線的虛軸長是實軸長的2倍,所以,即,所以故選C.考點:雙曲線的標準方程與簡單幾何性質.10、A【解析】由同角公式求出,根據(jù)三角形面積公式求出,根據(jù)余弦定理求出,根據(jù)正弦定理求出.【詳解】因為,所以,因為,的面積為10,所以,故,從而,解得,由正弦定理得:.故選:A.【點睛】本題考查了同角公式,考查了三角形的面積公式,考查了余弦定理,考查了正弦定理,屬于基礎題.11、A【解析】本題考查極坐標與直角坐標互化由點M的極坐標,知極坐標與直角坐標的關系為,所以的直角坐標為即故正確答案為A12、C【解析】設出雙曲線半焦距c,利用斜率坐標公式結合垂直關系列式計算作答.【詳解】設雙曲線半焦距為c,則,直線BF的斜率為,雙曲線的漸近線為:,因直線BF與雙曲線的一條漸近線垂直,則有,即,于是得,而,解得,所以雙曲線的離心率為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出拋物線的焦點坐標即為的右焦點可得答案.【詳解】由題意可知:拋物線的焦點坐標為,由題意知表示焦點在軸的橢圓,在橢圓中:,所以,因為,所以.故答案為:.14、【解析】先求出正方形的面積,然后求出動點到點的距離所表示的平面區(qū)域的面積,最后根據(jù)幾何概型計算公式求出概率.【詳解】正方形的面積為,如下圖所示:陰影部分的面積為:,在正方形內,陰影外面部分的面積為,則在該正方形區(qū)域內隨機取一個點,則此點到點的距離大于的概率是.【點睛】本題考查了幾何概型的計算公式,正確求出陰影部分的面積是解題的關鍵.15、【解析】利用點到直線的距離公式即可得出【詳解】利用點到直線的距離可得:故答案為:16、【解析】結合橢圓、雙曲線的定義以及它們的光學性質求得正確答案.【詳解】橢圓;雙曲線,雙曲線和橢圓的焦點重合.根據(jù)雙曲線的定義有,所以①,②,根據(jù)橢圓的定義由,所以路程.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】(1)由題意直線的斜率公式,兩直線垂直的性質,求出的斜率,再用點斜式求直線的方程(2)根據(jù)的面積為5,求得點到直線的距離,再利用點到直線的距離公式,求得的值【詳解】解:(1),,的中點的坐標為,又設邊的垂直平分線所在的直線的斜率為則,可得的方程為,即邊的垂直平分線所在的直線的方程(2)邊所在的直線方程為設邊上的高為即點到直線的距離為且解得解得或,點的坐標為或18、(1);(2)答案見解析.【解析】(1)當時,,求出函數(shù)的導函數(shù),再求出,,再利用點斜式求出切線方程;(2)首先求出函數(shù)的導函數(shù),再對參數(shù)分類討論,求出函數(shù)的單調區(qū)間;【詳解】解:(1)當時,,所以,所以,,所以切線方程為:,即:(2)函數(shù)定義域為,,因為,①當時,在上恒成立,所以函數(shù)的單調遞增區(qū)間為,無單調遞減區(qū)間;②當時,由得,由得,所以函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為【點睛】本題考查導數(shù)的幾何意義,利用導數(shù)研究含參函數(shù)的單調區(qū)間,屬于基礎題.19、(1);(2)或.【解析】(1)本題首先可以設動點,然后根據(jù)題意得出,通過化簡即可得出結果;(2)本題首先可排除直線斜率不存在時情況,然后設直線方程為,通過聯(lián)立方程并化簡得出,則,,再然后根據(jù)得出,最后根據(jù)的面積為即可得出結果.【詳解】(1)設動點,因為動點到直線的距離與到點的距離之差為,所以,化簡可得,故軌跡方程為.(2)當直線斜率不存在時,其方程為,此時,與只有一個交點,不符合題意,當直線斜率存在時,設其方程為,聯(lián)立方程,化簡得,,令、,則,,因為,所以,因為的面積為,所以,解得或,故直線方程為:或.【點睛】本題考查動點的軌跡方程的求法以及拋物線與直線相交的相關問題的求解,能否根據(jù)題意列出等式是求動點的軌跡方程的關鍵,考查韋達定理的應用,在計算時要注意斜率為這種情況,考查計算能力,考查轉化與化歸思想,是中檔題.20、(Ⅰ);(Ⅱ)答案見解析.【解析】(Ⅰ)求導數(shù).求得切線方程,由切線與軸的交點在負半軸可得的范圍;(Ⅱ)求導數(shù),由的正負確定單調性,極值得最值【詳解】命題意圖本題主要考查導數(shù)在函數(shù)問題中的應用解析(Ⅰ)由題可知,,故可得的圖象在點處的切線方程為令,可得由題意可得,即,解得,即的取值范圍為(Ⅱ)當時,,易知在上單調遞增又,當時,,此時單調遞減,當時,,此時單調遞增,無最大值【點睛】關鍵點點睛:本題考查用導數(shù)的幾何意義,考查用導數(shù)求函數(shù)的的最值.解題關鍵是求出導函數(shù),由的正負確定單調性,得函數(shù)的極值,從而可得最值21、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設,以為坐標原點建立空間直角坐標系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年華潤湖北醫(yī)藥有限公司招聘備考題庫及完整答案詳解1套
- 2026年中國人民銀行清算總中心直屬企業(yè)銀清企業(yè)服務(北京)有限公司公開招聘備考題庫及參考答案詳解一套
- 2026年宜昌點軍區(qū)招聘城管執(zhí)法協(xié)管員5人備考題庫參考答案詳解
- 2026年中國科學院上海硅酸鹽研究所發(fā)展規(guī)劃處副處長招聘備考題庫參考答案詳解
- 2026年固鎮(zhèn)縣司法局選聘專職人民調解員16人備考題庫完整參考答案詳解
- 2026年中國科學院干旱區(qū)生態(tài)安全與可持續(xù)發(fā)展全國重點實驗室專職秘書招聘備考題庫及答案詳解參考
- 2026年嘉魚縣公安局公開招聘警務輔助人員備考題庫及完整答案詳解1套
- 2026年中國社會科學院亞太與全球戰(zhàn)略研究院公開招聘管理人員備考題庫及參考答案詳解
- 江西省高速集團招聘筆試題庫2026
- 上海銷售分公司招聘筆試題庫2026
- 甘肅省酒泉市普通高中2025~2026學年度第一學期期末考試物理(含答案)
- 政治●天津卷丨2024年天津市普通高中學業(yè)水平選擇性考試政治試卷及答案
- GB 30254-2024高壓三相籠型異步電動機能效限定值及能效等級
- 鹽酸、硫酸產品包裝說明和使用說明書
- GB/T 43731-2024生物樣本庫中生物樣本處理方法的確認和驗證通用要求
- 2024年部門業(yè)務主管自查自糾問題總結及整改措施
- 汽車線束DFMEA設計失效模式和影響分析
- 烏魯木齊地區(qū)2024年高三年級第一次質量監(jiān)測(一模)英語試卷(含答案)
- plc電梯設計的參考文獻
- 中偉西部基地液氨制氨水項目環(huán)評報告
- 地下室消防安全制度
評論
0/150
提交評論