湖北省天門市2026屆數(shù)學(xué)高二上期末綜合測試試題含解析_第1頁
湖北省天門市2026屆數(shù)學(xué)高二上期末綜合測試試題含解析_第2頁
湖北省天門市2026屆數(shù)學(xué)高二上期末綜合測試試題含解析_第3頁
湖北省天門市2026屆數(shù)學(xué)高二上期末綜合測試試題含解析_第4頁
湖北省天門市2026屆數(shù)學(xué)高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省天門市2026屆數(shù)學(xué)高二上期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列為等差數(shù)列,則下列數(shù)列一定為等比數(shù)列的是()A. B.C. D.2.命題:“,”的否定形式為()A., B.,C., D.,3.設(shè)等差數(shù)列,的前n項和分別是,,若,則()A. B.C. D.4.若,則的值為()A.或 B.或C.1 D.-15.已知點在拋物線上,則點到拋物線焦點的距離為()A.1 B.2C.3 D.46.在平面上有一系列點,對每個正整數(shù),點位于函數(shù)的圖象上,以點為圓心的與軸都相切,且與彼此外切.若,且,,的前項之和為,則()A. B.C. D.7.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等8.下列雙曲線中,漸近線方程為的是A. B.C. D.9.若直線與平行,則實數(shù)m等于()A.0 B.1C.4 D.0或410.若函數(shù)恰好有個不同的零點,則的取值范圍是()A. B.C. D.11.已知直線在兩個坐標(biāo)軸上的截距之和為7,則實數(shù)m的值為()A.2 B.3C.4 D.512.沙糖桔網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的最大值為90萬元,最小值為30萬元 B.這一年的總利潤超過400萬元C.這12個月利潤的中位數(shù)與眾數(shù)均為30 D.7月份的利潤最大二、填空題:本題共4小題,每小題5分,共20分。13.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為______14.直線恒過定點,則定點坐標(biāo)為________15.已知數(shù)列滿足,,則使得成立的n的最小值為__________.16.已知數(shù)列是公差不為零的等差數(shù)列,,,成等比數(shù)列,第1,2項與第10,11項的和為68,則數(shù)列的通項公式是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是正方形,側(cè)面底面,為側(cè)棱上一點(1)求證:;(2)若為中點,平面與側(cè)棱于點,且,求四棱錐的體積18.(12分)在平面直角坐標(biāo)系中,△的三個頂點分別是點.(1)求△的外接圓O的標(biāo)準(zhǔn)方程;(2)過點作直線平行于直線,判斷直線與圓O的位置關(guān)系,并說明理由.19.(12分)在下列所給的三個條件中任選一個,補充在下面問題中,并完成解答(若選擇多個條件分別解答,則按第一個解答計分).①與直線平行;②與直線垂直;③直線l的一個方向向量為;已知直線l過點,且___________.(1)求直線l的一般方程;(2)若直線l與圓C:相交于M,N兩點,求弦長.20.(12分)設(shè)點,動圓P經(jīng)過點F且和直線相切,記動圓的圓心P的軌跡為曲線W(1)求曲線W的方程;(2)直線與曲線W交于A、B兩點,其中O為坐標(biāo)原點,已知點T的坐標(biāo)為,記直線TA,TB的斜率分別為,,則是否為定值,若是求出,不是說明理由21.(12分)已知函數(shù),若函數(shù)處取得極值(1)求,的值;(2)求函數(shù)在上的最大值和最小值22.(10分)已知橢圓的離心率為,且經(jīng)過點.(1)求橢圓的方程;(2)經(jīng)過點的直線與橢圓交于不同的兩點,,為坐標(biāo)原點,若的面積為,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)等比數(shù)列的定義判斷【詳解】設(shè)的公差是,即,顯然,且是常數(shù),是等比數(shù)列,若中一個為1,則,則不是等比數(shù)列,只要,,都不可能是等比數(shù)列,如,,故選:A2、D【解析】根據(jù)含一個量詞的命題的否定方法直接得到結(jié)果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結(jié)論.3、B【解析】利用求解.【詳解】解:因為等差數(shù)列,的前n項和分別是,所以.故選:B4、B【解析】求出函數(shù)的導(dǎo)數(shù),由方程求解即可.【詳解】,,解得或,故選:B5、B【解析】先求出拋物線方程,焦點坐標(biāo),再用兩點間距離公式進行求解.【詳解】將代入拋物線中得:,解得:,所以拋物線方程為,焦點坐標(biāo)為,所以點到拋物線焦點的距離為故選:B6、C【解析】根據(jù)兩圓的幾何關(guān)系及其圓心在函數(shù)的圖象上,即可得到遞推關(guān)系式,通過構(gòu)造等差數(shù)列求得的通項公式,得出,最后利用裂項相消,求出數(shù)列前項和,即可求出.詳解】由與彼此外切,則,,,又∵,∴,故為等差數(shù)列且,,則,,則,即,故答案選:.7、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C8、A【解析】由雙曲線的漸進線的公式可行選項A的漸進線方程為,故選A.考點:本題主要考查雙曲線的漸近線公式.9、A【解析】由兩條直線平行的充要條件即可求解.【詳解】解:因為直線與平行,所以,解得,故選:A.10、D【解析】分析可知,直線與函數(shù)的圖象有個交點,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可求得實數(shù)的取值范圍.【詳解】令,可得,構(gòu)造函數(shù),其中,由題意可知,直線與函數(shù)的圖象有個交點,,由,可得或,列表如下:增極大值減極小值增所以,,,作出直線與函數(shù)的圖象如下圖所示:由圖可知,當(dāng)時,即當(dāng)時,直線與函數(shù)的圖象有個交點,即函數(shù)有個零點.故選:D.11、C【解析】求出直線方程在兩坐標(biāo)軸上的截距,列出方程,求出實數(shù)m的值.【詳解】當(dāng)時,,故不合題意,故,,令得:,令得:,故,解得:.故選:C12、B【解析】根據(jù)圖形和中位數(shù)、眾數(shù)的概念依次判斷選項即可.【詳解】A:由圖可知,月收入的最大值為90,最小值為30,故A正確;B:各個月的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,所以總利潤為20+30+20+10+30+30+60+40+30+30+50+30=380(萬元),故B錯誤;C:這12個月利潤的中位數(shù)與眾數(shù)均為30,故C正確;D:7月份的利潤最大,為60萬元,故D正確.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)題設(shè)及雙曲線離心率公式可得,結(jié)合雙曲線離心率的性質(zhì)即可求離心率.【詳解】由題設(shè),,整理得:,所以,而,故.故答案為:.14、【解析】解方程組可求得定點坐標(biāo).【詳解】直線方程可化為,由,可得.故直線恒過定點.故答案為:.15、11【解析】由題設(shè)可得,結(jié)合等比數(shù)列的定義知從第二項開始是公比為2的等比數(shù)列,進而寫出的通項公式,即可求使成立的最小值n.【詳解】因為,所以,兩式相除得,整理得.因為,故從第二項開始是等比數(shù)列,且公比為2,因為,則,所以,則,由得:,故故答案為:11.16、【解析】利用基本量結(jié)合已知列方程組求解即可.【詳解】設(shè)等差數(shù)列的公差為由題可知即因為,所以解得:所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)利用面面垂直的性質(zhì)定理可得出平面,再利用線面垂直的性質(zhì)可得出;(2)分析可知為的中點,平面,計算出梯形的面積,利用錐體的體積公式可求得四棱錐的體積【小問1詳解】證明:因為四邊形為正方形,則,因為側(cè)面底面,平面平面,平面,所以平面,又平面,所以.【小問2詳解】解:因為,平面,平面,所以,平面,因為平面,平面平面,所以,所以,,則,所以,四邊形是直角梯形,又是中點,所以,,所以,由平面,平面,所以,從而,正三角形中,是中點,,即,,所以平面,因為,所以.18、(1);(2)直線與圓O相切,理由見解析.【解析】(1)法1:設(shè)外接圓為,由點在圓上,將其代入方程求參數(shù),即可得圓的方程;法2:利用斜率的兩點式易得,則是△外接圓的直徑,進而求圓心坐標(biāo)、半徑,即可得圓的標(biāo)準(zhǔn)方程.(2)由題設(shè)有直線垂直于x軸,根據(jù)直線平行于直線及所過的點寫出直線l的方程,求圓O的圓心與直線距離,并與半徑比大小,即可確定它們的位置關(guān)系.【小問1詳解】法1:設(shè)過三點的圓的方程為,則,解得,所求圓的方程為,即.法2:因,所以,則是△外接圓的直徑,圓心,所以所求圓的方程為.【小問2詳解】因為,則直線垂直于x軸,所以直線的方程為,由(1)知:圓心到直線的距離,所以直線與圓O相切.19、(1)若選擇①②,則直線方程為:;若選擇③,則直線方程為;(2)若選擇①②,則;若選擇③,則.【解析】(1)根據(jù)所選擇的條件,結(jié)合直線過點,即可寫出直線的方程;(2)利用(1)中所求直線方程,以及弦長公式,即可求得結(jié)果.【小問1詳解】若選①與直線平行,則直線的斜率;又其過點,故直線的方程為,則其一般式為;若選②與直線垂直,則直線的斜率滿足,解得;又其過點,故直線的方程為,則其一般式為;若選③直線l的一個方向向量為,則直線的斜率;又其過點,故直線的方程為,則其一般式為;綜上所述:若選擇①②,則直線方程為:;若選擇③,則直線方程為.【小問2詳解】對圓C:,其圓心為,半徑,根據(jù)(1)中所求,若選擇①②,則直線方程為,則圓心到直線的距離,則直線截圓所得弦長;若選擇③,則直線方程為,則圓心到直線的距離,則直線截圓所得弦長.綜上所述,若選擇①②,則;若選擇③,則.20、(1);(2)是定值,.【解析】(1)根據(jù)給定條件結(jié)合拋物線定義直接求解作答.(2)聯(lián)立直線與拋物線方程,借助韋達(dá)定理、斜率坐標(biāo)公式計算作答.【小問1詳解】過點P作直線的垂線,垂足為點N,依題意,,則動點P的軌跡是以為焦點,直線為準(zhǔn)線的拋物線,所以曲線W的方程是.【小問2詳解】設(shè),,由消去x并整理得:,則,,因,,則,,因此,所以.【點睛】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān);(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值21、(1);(2)最大值為,最小值為【解析】(1)求出導(dǎo)函數(shù),由即可解得;(2)求出函數(shù)的單調(diào)區(qū)間,進而可以求出函數(shù)的最值.【詳解】解:(1)由題意,可得,得.(2),令,得或(舍去)當(dāng)變化時,與變化如下遞增遞減所以函數(shù)在上的最大值為,最小值為.22、(1);(2)或.【解析】(1)由離心率公式、將點代入橢圓方程得出橢圓的方程;(2)聯(lián)立橢圓和直線的方程,由判別式得出的范圍,再由韋達(dá)定理結(jié)合三角形面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論