2026屆涼山市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
2026屆涼山市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
2026屆涼山市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
2026屆涼山市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
2026屆涼山市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆涼山市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù),則()A.4 B.5C.6 D.72.已知?jiǎng)狱c(diǎn)滿足,則動(dòng)點(diǎn)的軌跡是()A.橢圓 B.直線C.線段 D.圓3.已知函數(shù),.若存在三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.4.大數(shù)學(xué)家阿基米德的墓碑上刻有他最引以為豪的數(shù)學(xué)發(fā)現(xiàn)的象征圖——球及其外切圓柱(如圖).以此紀(jì)念阿基米德發(fā)現(xiàn)球的體積和表面積,則球的體積和表面積均為其外切圓柱體積和表面積的()A. B.C. D.5.設(shè)雙曲線的虛軸長(zhǎng)為,焦距為,則雙曲線的漸近線方程為()A. B.C. D.6.在直三棱柱中,,,則直線與所成角的大小為()A.30° B.60°C.120° D.150°7.已知函數(shù)在處的導(dǎo)數(shù)為,則()A. B.C. D.8.過(guò)拋物線C:y2=4x的焦點(diǎn)F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.169.已知平面,的法向量分別為,,則()A. B.C.,相交但不垂直 D.,的位置關(guān)系不確定10.已知直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,則實(shí)數(shù)a的值為()A.﹣2 B.C.1 D.1或﹣211.饕餮(tāotiè)紋,青銅器上常見(jiàn)的花紋之一,盛行于商代至西周早期,最早出現(xiàn)在距今五千年前長(zhǎng)江下游地區(qū)的良渚文化玉器上.有人將饕餮紋的一部分畫(huà)到了方格紙上,如圖所示,每個(gè)小方格的邊長(zhǎng)為,有一點(diǎn)從點(diǎn)出發(fā)每次向右或向下跳一個(gè)單位長(zhǎng)度,且向右或向下跳是等可能性的,那么它經(jīng)過(guò)次跳動(dòng)后恰好是沿著饕餮紋的路線到達(dá)點(diǎn)的概率為()A. B.C. D.12.某市物價(jià)部門(mén)對(duì)5家商場(chǎng)的某商品一天的銷售量及其售價(jià)進(jìn)行調(diào)查,5家商場(chǎng)的售價(jià)(元)和銷售量(件)之間的一組數(shù)據(jù)如表所示.按公式計(jì)算,與的回歸直線方程是,則下列說(shuō)法錯(cuò)誤的是()售價(jià)99.51010.511銷售量1110865A.B.售價(jià)變量每增加1個(gè)單位時(shí),銷售變量大約減少3.2個(gè)單位C.當(dāng)時(shí),的估計(jì)值為12.8D.銷售量與售價(jià)成正相關(guān)二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在四棱錐中,平面,底面是菱形,且,則異面直線與所成的角的余弦值為_(kāi)_____,點(diǎn)到平面的距離等于______.14.設(shè)、為正數(shù),若,則的最小值是______,此時(shí)______.15.已知函數(shù)(1)若時(shí)函數(shù)有三個(gè)互不相同的零點(diǎn),求實(shí)數(shù)的取值范圍;(2)若對(duì)任意的,不等式在上恒成立,求實(shí)數(shù)的取值范圍16.已知直線,圓,若直線與圓相交于兩點(diǎn),則的最小值為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)命題p:直線l:與圓C:有公共點(diǎn),命題q:雙曲線的離心率(1)若p,q均為真命題,求實(shí)數(shù)m的取值范圍;(2)若為真,為假,求實(shí)數(shù)m的取值范圍18.(12分)已知為數(shù)列的前項(xiàng)和,且(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和(3)設(shè),若不等式對(duì)一切恒成立,求實(shí)數(shù)取值范圍19.(12分)已知命題p:函數(shù)有零點(diǎn);命題,(1)若命題p,q均為真命題,求實(shí)數(shù)a的取值范圍;(2)若為真命題,為假命題,求實(shí)數(shù)a的取值范圍20.(12分)三棱柱中,側(cè)面為菱形,,,,(1)求證:面面;(2)在線段上是否存在一點(diǎn)M,使得二面角為,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由21.(12分)我們知道,裝同樣體積的液體容器中,如果容器的高度一樣,那么側(cè)面所需的材料就以圓柱形的容器最省.所以汽油桶等裝液體的容器大都是圓柱形的,某臥式油罐如圖1所示,它垂直于軸的截面如圖2所示,已知截面圓的半徑是1米,弧的長(zhǎng)為米表示劣弧與弦所圍成陰影部分的面積.(1)請(qǐng)寫(xiě)出函數(shù)表達(dá)式;(2)用求導(dǎo)的方法證明.22.(10分)在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),已知直線:mx-(2-m)y-4=0與直線h:x+y-2=0的交點(diǎn)M在第一三象限的角平分線上.(1)求實(shí)數(shù)m的值;(2)若點(diǎn)P在直線l上且,求點(diǎn)P的坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】求出函數(shù)的導(dǎo)數(shù),將x=1代入即可求得答案.【詳解】,故,故選:D.2、C【解析】根據(jù)兩點(diǎn)之間的距離公式的幾何意義即可判定出動(dòng)點(diǎn)軌跡.【詳解】由題意可知表示動(dòng)點(diǎn)到點(diǎn)和點(diǎn)的距離之和等于,又因?yàn)辄c(diǎn)和點(diǎn)的距離等于,所以動(dòng)點(diǎn)的軌跡為線段.故選:3、B【解析】根據(jù)題意,當(dāng)時(shí),有一個(gè)零點(diǎn),進(jìn)而將問(wèn)題轉(zhuǎn)化為當(dāng)時(shí),有兩個(gè)實(shí)數(shù)根,再研究函數(shù)即可得答案.【詳解】解:因?yàn)榇嬖谌齻€(gè)零點(diǎn),所以方程有三個(gè)實(shí)數(shù)根,因?yàn)楫?dāng)時(shí),由得,解得,有且只有一個(gè)實(shí)數(shù)根,所以當(dāng)時(shí),有兩個(gè)實(shí)數(shù)根,即有兩個(gè)實(shí)數(shù)根,所以令,則,所以當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,因?yàn)?,,,所以的圖象如圖所示,所以有兩個(gè)實(shí)數(shù)根,則故選:B4、C【解析】設(shè)球的半徑為,則圓柱的底面半徑為,高為,分別求出球的體積與表面積,圓柱的體積與表面積,從而得出答案.【詳解】設(shè)球的半徑為,則圓柱的底面半徑為,高為所以球的體積為,表面積為.圓柱的體積為:,所以其體積之比為:圓柱的側(cè)面積為:,圓柱的表面積為:所以其表面積之比為:故選:C5、B【解析】求出、的值,即可得出雙曲線的漸近線方程.【詳解】由已知可得,,則,因此,該雙曲線的漸近線方程為.故選:B.6、B【解析】根據(jù)三棱柱的特征補(bǔ)全為正方體,則,為直線與所成角,連接,則為等邊三角形即可得解.【詳解】根據(jù)直三棱柱的特征,補(bǔ)全可得如圖所示的正方體,易知,為直線與所成角,連接,則為等邊三角形,所以,所以直線與所成角的大小為.故選:B7、C【解析】利用導(dǎo)數(shù)的定義即可求出【詳解】故選:C8、B【解析】設(shè)出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長(zhǎng)公式表達(dá)出,同理表達(dá)出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點(diǎn)F為,直線l1的方程為,則聯(lián)立后得到,設(shè),,,則,同理設(shè)可得:,因?yàn)閨k1·k2|=2,所以,當(dāng)且僅當(dāng),即或時(shí),等號(hào)成立,故選:B9、C【解析】利用向量法判斷平面與平面的位置關(guān)系.【詳解】因?yàn)槠矫妫姆ㄏ蛄糠謩e為,,所以,即不垂直,則,不垂直,因?yàn)?,即即不平行,則,不平行,所以,相交但不垂直,故選:C10、B【解析】由題意,利用兩直線垂直的性質(zhì),兩直線垂直時(shí),一次項(xiàng)對(duì)應(yīng)系數(shù)之積的和等于0,計(jì)算求得a的值【詳解】∵直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故選:B11、B【解析】本題首先可根據(jù)題意列出次跳動(dòng)的所有基本事件,然后找出沿著饕餮紋的路線到達(dá)點(diǎn)的事件,最后根據(jù)古典概型的概率計(jì)算公式即可得出結(jié)果.【詳解】點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個(gè)單位長(zhǎng)度,次跳動(dòng)的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達(dá)點(diǎn)的事件有:(下,下,右),故到達(dá)點(diǎn)的概率,故選:B.12、D【解析】首先求出、,再根據(jù)回歸直線方程必過(guò)樣本中心點(diǎn),即可求出,再根據(jù)回歸直線方程的性質(zhì)一一判斷即可;【詳解】解:因?yàn)?,,與回歸直線方程,恒過(guò)定點(diǎn),,解得,故A正確,所以回歸直線方程為,即售價(jià)變量每增加1個(gè)單位時(shí),銷售變量大約減少3.2個(gè)單位,故B正確;當(dāng)時(shí),即當(dāng)時(shí),的估計(jì)值為12.8,故C正確;因?yàn)榛貧w直線方程為,所以銷售量與售價(jià)成負(fù)相關(guān),故D錯(cuò)誤;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】因?yàn)榈酌媸橇庑?可得,則異面直線與所成的角和與所成的角相等,即可求得異面直線與所成的角的余弦值.在底面從點(diǎn)向作垂線,求證垂直平面,即可求得答案.【詳解】根據(jù)題意畫(huà)出其立體圖形:如圖底面是菱形,則異面直線與所成的角和直線與所成的角相等平面,平面又,底面是菱形即故:異面直線與所成的角的余弦值為:在底面從點(diǎn)向作垂線平面,平面,平面故是到平面的距離故答案為:,.【點(diǎn)睛】本題考查了求異面直線的夾角和點(diǎn)到面距離,解題關(guān)鍵是掌握將求異面直線夾角轉(zhuǎn)化為共面直線夾角的解法,考查了分析能力和推理能力,屬于基礎(chǔ)題.14、①.4②.【解析】巧用“1”改變目標(biāo)式子的結(jié)果,借助均值不等式求最值即可.【詳解】,當(dāng)且僅當(dāng)即,時(shí)等號(hào)成立.故答案為,【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用“1”的代換法和基本不等式,考查運(yùn)算能力,屬于中檔題15、(1)(2)【解析】(1)將函數(shù)有三個(gè)互不相同的零點(diǎn)轉(zhuǎn)化為有三個(gè)互不相等的實(shí)數(shù)根,令,求導(dǎo)確定單調(diào)性求出極值即可求解;(2)求導(dǎo)確定單調(diào)性,結(jié)合以及得,由得,結(jié)合二次函數(shù)單調(diào)性求出最小值即可求解.【小問(wèn)1詳解】當(dāng)時(shí),.函數(shù)有三個(gè)互不相同的零點(diǎn),即有三個(gè)互不相等的實(shí)數(shù)根令,則,令得或,在和上均減函數(shù),在上為增函數(shù),極小值為,極大值為,的取值范圍是;【小問(wèn)2詳解】,且,當(dāng)或時(shí),;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為當(dāng)時(shí),,又,,又,又在上恒成立,即,即當(dāng)時(shí),恒成立在上單減,故最小值為,的取值范圍是16、【解析】求出直線過(guò)的定點(diǎn),當(dāng)圓心和定點(diǎn)的連線垂直于直線時(shí),取得最小值,結(jié)合即可求解.【詳解】由題意知,圓,圓心,半徑,直線,,,解得,故直線過(guò)定點(diǎn),設(shè)圓心到直線的距離為,則,可知當(dāng)距離最大時(shí),有最小值,由圖可知,時(shí),最大,此時(shí),此時(shí).故的最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2).【解析】(1)求出,成立的等價(jià)條件,即可求實(shí)數(shù)的取值范圍;(2)若“”為假命題,“”為真命題,則、一真一假,當(dāng)真假時(shí),求出的取值范圍,當(dāng)假真時(shí),求出的取值范圍,然后取并集即可得答案【小問(wèn)1詳解】若命題為真命題,則,解得:,若命題為真命題,則且,,解得,∴,均為真命題,實(shí)數(shù)的取值范圍是,;【小問(wèn)2詳解】若為真,為假,則、一真一假;①當(dāng)真假時(shí),即“”且“或”,則此時(shí)的取值范圍是;當(dāng)假真時(shí),即“或”且“”,則此時(shí)的取值范圍是;綜上,的取值范圍是18、(1);(2);(3).【解析】(1)利用的關(guān)系,根據(jù)等比數(shù)列的定義求通項(xiàng)公式.(2)由(1)可得,應(yīng)用裂項(xiàng)相消法求.(3)應(yīng)用錯(cuò)位相減法求得,由題設(shè)有,討論為奇數(shù)、偶數(shù)求的取值范圍【小問(wèn)1詳解】當(dāng)時(shí),,可得,當(dāng)時(shí),,可得,∴是首項(xiàng)、公比都為的等比數(shù)列,故.【小問(wèn)2詳解】由(1),,∴.【小問(wèn)3詳解】由題設(shè),,∴,則,∴,由對(duì)一切恒成立,令,則,∴數(shù)列單調(diào)遞減,∴當(dāng)為奇數(shù),恒成立且在上遞減,則,當(dāng)為偶數(shù),恒成立且在上遞增,則,綜上,.19、(1);(2).【解析】(1)根據(jù)二次函數(shù)的性質(zhì)求p為真時(shí)a的取值范圍,根據(jù)的性質(zhì)判斷與有交點(diǎn)求q為真時(shí)a的取值范圍,進(jìn)而求p,q均為真時(shí)a的取值范圍.(2)根據(jù)復(fù)合命題的真假可得p,q一真一假,討論p、q的真假分別求a的取值范圍,最后取并集即可.【小問(wèn)1詳解】若p為真,,解得或,所以若q為真,因?yàn)樵谏蠟樵龊瘮?shù),所以,故,所以若p,q均為真命題,a的取值范圍為【小問(wèn)2詳解】由題設(shè),易知:p,q兩命題一真一假當(dāng)p真q假時(shí),p為真,則或,q為假,則或,此時(shí)a的取值范圍為;當(dāng)p假q真時(shí),p為假,則,q為真,則,此時(shí)a的取值范圍為綜上,實(shí)數(shù)a的取值范圍為.20、(1)證明見(jiàn)解析;(2)【解析】(1)取BC的中點(diǎn)O,連結(jié)AO、,在三角形中分別證明和,再利用勾股定理證明,結(jié)合線面垂直的判定定理可證明平面,再由面面垂直的判定定理即可證明結(jié)果.(2)建立空間直角坐標(biāo)系,假設(shè)點(diǎn)M存在,設(shè),求出M點(diǎn)坐標(biāo),然后求出平面的法向量,利用空間向量的方法根據(jù)二面角的平面角為可求出的值.【詳解】(1)取BC的中點(diǎn)O,連結(jié)AO,,,為等腰直角三角形,所以,;側(cè)面為菱形,,所以三角形為為等邊三角形,所以,又,所以,又,滿足,所以;因?yàn)?,所以平面,因?yàn)槠矫嬷?,所以平面平?(2)由(1)問(wèn)知:兩兩垂直,以O(shè)為坐標(biāo)原點(diǎn),為軸,為軸,為軸建立空間之間坐標(biāo)系.則,,,,若存在點(diǎn)M,則點(diǎn)M在上,不妨設(shè),則有,則,有,,設(shè)平面的法向量為,則解得:平面的法向量為則解得:或(舍)故存在點(diǎn)M,.【點(diǎn)睛】本題考查立體幾何探索是否存在

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論